Get Started Using PlantProm DB

The current release PlantProm DB allows users to:

- (1) Retrieve and download 576 experimentally verified promoter sequences, classified by promoter class and taxonomy;
- (2) Retrieve and download in FASTA format promoter sequences and a putative TSS map, in both text and GFF formats, for 113,556 protein-coding genes of *O. sativa*, *Z. mays*, *M. truncatula*, *G. max* and *V. vinifera*.
- (3) Get a PubMed link for every entry for 576 experimentally verified promoters;
- (4) Retrieve and download TATA-box and INR NFMs.
- (5) Get information on nucleotide composition of promoter regions before [-200:-1] and after [+1:+51] TSS in various sets of 576 experimentally verified promoters;
- (6) Retrieve and download putative TFBS contents of 576 experimentally verified promoter sequences.
- (7) Retrieve and download putative TFBS contents of [-1000:-101] regions of 22,257, 23,334, 18,226, 38,702 and 11,037 protein-coding genes of *O. sativa*, *Z. mays*, *M. truncatula*, *G. max* and *V. vinifera*, respectively.
- (8) Search for promoter sequences by promoter or gene ID.
- (9) Perform BLAST comparison of a user-given query sequence with both experimentally verified promoters and [-1000:+1] regions of protein-coding genes of *O. sativa*, *Z. mays*, *M. truncatula*, *G. max* and *V. vinifera*.

The menu and search service of PlantProm DB use JavaScript. Commonly used browsers - Internet Explorer, Firefox, Safari etc. – can be used with the database.

How to use PlantProm DB

Once you connect to PlantProm DB home page, you are ready to start working with DB.

View and download experimentally verified promoters

In Main Menu, if an option "**Promoters from direct experiments**" is chosen, the following submenu appears:

Home	DNA sequences of 576 experimentally verified promoter regions [-200+51] with TSS at +1
Promoters from direct experiments	All 576 promoters view or download
Putative TSS map for protein- coding genes	150 promoters of monocots, view or download
Classification of promoters	403 promoters of dicots, view or download
Canonical NFMs	23 promoters from other plants, view or download
Nucleotide composition	345 TATA promoters from all species, view or download
Regulatory motifs	84 TATA promoters from monocots, view or download
Computation of NFMs	256 TATA promoters from dicots, view or download
	5 TATA promoters from other plant species, view or download
Q Search services ∨	231 TATA-less promoters from all species, view or download
Search for promoters from direct experiments	66 TATA-less promoters from monocots, view or download
Search for putative TSS map for	147 TATA-less promoters from dicots, view or download
protein-coding genes	18 TATA-less promoters from other plant species, view or download
BLAST search	

In this sub-menu, for a selected group of promoters,

- If an option **view** is clicked, the corresponding 251-bp promoter sequences in FASTA format are displayed;
- If an option **download** is clicked, the following prompt window is displayed:

00	Opening PLPR_all_d.fasta.gz
You have ch	osen to open:
PLPR_all_	d.fasta.gz
which is: g from: http:	zip compressed archive (67.9 KB) //www.softberry.com
What should	Firefox do with this file?
Open w Save Fil	ith Archive Utility (default)
	Cancel OK

Click "OK", to save GZ file with sequences.

View and download sequences of [-1000:+100] regions of protein-coding genes (+1 is an annotated gene start) and computationally predicted TSS maps for 5 genomes

In Main Menu, if an option **Putative TSS map for protein-coding genes** is chosen, the following sub-menu appears (shown here only partially):

Home	
Promoters from direct experiments	Putative promoter (TSS) map of 22,257 protein coding genes from <i>Oryza sativa</i> predicted by TSSPlant program (Shahmuradov, Umarov and Solovyev, unpublished), including:
Putative TSS map for protein-	Promoter sequences in FASTA format
coding genes	List of predicted TSSs in GFF format
Classification of promoters	List of predicted TSSs in Text format
Canonical NFMs	Description of genes
Nucleotide composition	Putative promotor (TSS) map of 22.224 protoin coding gapos from Zag mays predicted by TSSDIant
Regulatory motifs	program (Shahmuradov, Umarov and Solovyev, unpublished), including:
Computation of NFMs	Promoter sequences in FASTA format
	List of predicted TSSs in GFF format
Q Search services ∨	List of predicted TSSs in Text format
Search for promoters from direct experiments	Description of genes

In this sub-menu, for the selected species, the user can choose four options: **Promoter** sequences in FASTA format, List of predicted TSSs in GFF format, List of predicted TSSs in Text format and Descriptions of genes.

• If **Promoter sequences in FASTA format** is chosen, a new download page with information on the download file size and total number of records (sequences) in this file is displayed.

PlantProm: Plant Promoter Database

Database of Plant Promoter Sequences (Release 2016.03)

Home	
	Down
Promoters from direct experiments	Organi
	Oryza s
Putative TSS map for protein-	Zea ma
coding genes	Glycine
Classification of promoters	Medica
-	Vitis vir
Canonical NFMs	
Nucleotide composition	

Download promoter sequences in FASTA format

Organism	File name	File size	Number of sequences
Oryza sativa	OSprom1101nr.fasta.gz	8,5M	22257
Zea mays	ZMprom1101nr.fasta.gz	9,0M	23334
Glycine max	GMprom1101nr.fasta.gz	15M	38702
Medicago truncatula	MTprom1101nr.fasta.gz	7,0M	18226
Vitis vinifera	VVprom1101nr.fasta.gz	4,1M	11037

Regulatory motifs

• If **List of predicted TSSs in GFF format** is chosen, a new page with data on predicted TSSs in GFF format is displayed for viewing and downloading:

##gff-versio	ion 3.2.1							
#Program TSS	SSPlant							
#Search for	RNA II promo	ters (1	rsss)					
#Ouery sours	se: Orvza sat	iva, ja	aponica (http://p	lants.en	sembl.	org/Orvza	sativa/Info/Index: version: 1-12IRGSP-1.0)
#Total scor:	ing threshold	for T	ATA	promoter	s: 1.52			,
	,	Π7	ATA-less	promoter	s: -0.04			
#For TSSs of	of different (TATA ar	nd TSTS-1	ess) cla	sses loc	ated a	t distance	300 bp or less, a single TSS with highest score is selected
#Search only	v on Sense St	rand		,				
##Ouery: 050	30160100100	1	1101					
Chrl TSSI	SPlant	tss	2919	2919	1,9812	+		Gene:0S01G0100100:Chr1:298310815:mRNA/CDS:2983/3449:5-UTR longest=466:promoter:TATA-less
Chrl TSS	SPlant	tss	2449	2449	1,9964	+		Gene: 0S01G0100100:Chr1:298310815:mBNA/CDS:2983/3449:5-UTB longest=466:promoter:TATA-less
##Ouery: 050	30160100200	1	1101					,,.,
Chrl TSSI	SPlant	tss	11177	11177	1,9937	+		Gene: 0S01G0100200: Chr1:1121812435:mRNA/CDS:11218/11798:5-UTR longest=580:promoter:TATA-less
Chrl TSS	SPlant	tss	10875	10875	1,8923	+		Gene: 0S01G0100200: Chr1:1121812435:mRNA/CDS:11218/11798:5-UTR longest=580:promoter:TATA-less
Chrl TSSI	SPlant	tas	10423	10423	1,9719	+		Gene: 0S01G0100200: Chr1:1121812435:mENA/CDS:11218/11798:5-UTE longest=580:promoter:TATA:
TATA-box por	sition:10389:	TATA-bo	x score=	6.0379				,
##Ouery: OS	501G0100400	1	1101					
Chrl TSSI	SPlant	tss	12743	12743	1.8893	+		Gene:OS01G0100400;Chr1:1272115685;mRNA/CDS:12721/12774;5-UTR longest=53;promoter:TATA-less
Chrl TSSI	SPlant	tas	12441	12441	1,9805	+		Gene: 0S01G0100400: Chr1:1272115685:mENA/CDS:12721/12774:5-UTE longest=53:promoter: TATA:
TATA-box pos	sition:12407:	TATA-bo	x score=	4.6517				
Chr1 TSS	SPlant	tas	12096	12096	1,7106	+		Gene:0S01G0100400:Cbr1:1272115685:mRNA/CDS:12721/12774:5-UTR longest=53:promoter:TATA:
TATA-box por	sition:12062:	TATA-bo	x score=	4.2347			-	

Here, TSS data for every query begins with "##Query...". Several next lines (until next query record) contain the following data: chromosome, TSS position (start and end positions are the same), Integral score for the TSS predicted, gene name, chromosome strand (+ or -), chromosome positions of gene start and end, mRNA and CDS start positions, length of the longest 5'-UTR and promoter class (TATA or TATA-less) as well as, for TATA promoters, start position and score of TATA-box.

• If List of predicted TSSs in Text format is clicked, a new page with data on predicted TSSs in text format is displayed:

Program TSSPlant: Search for RNA II promoters (TSSs)
Genome: Oryza sativa, japonica (http://plants.ensembl.org/Oryza_sativa/Info/Index; version: 1-12IRGSP-1.0)
Total scoring threshold for TATA promoters: 1.52 TATA-less promoters: -0.04
For TSSs of different (TATA and TSTS-less) classes located at distance 300 bp or less, a single TSS with highest score is selected Search only on Sense Strand
<pre>>Gene:0S01G0100100 Search region [-1000:+101], +1 is annotated gene start Chr1:298310815 mRNA/CDS:2983/3449 5-UTR_longest=466 TSS 1 2919 Score 1.9812 promoter:TATA-less TSS 2 2449 Score 1.9964 promoter:TATA-less</pre>
Total: 2 TSS(s) predicted
>Gene:0S01G0100200 Search region [-1000:+101], +1 is annotated gene start Chrl:1121812435 mRNA/CDS:11218/11798 5-UTR_longest=580 TSS 1 11177 Score 1.9937 promoter:TATA-less
TSS 2 10875 Score 1.8923 promoter:TATA-less TSS 3 10423 Score 1.9719 promoter:TATA-box_position:10389;TATA-box_score=6.0379
Total: 5 TS5(s) predicted
<pre>>Gene:0S01G0100400 Search region [-1000:+101], +1 is annotated gene start Chr1:1272115685 mRNA/CDS:12721/12774 5-UTR_longest=53 TSS 1 12743 Score 1.8893 promoter:TATA-less TSS 2 12441 Score 1.9805 promoter:TATA.prATA-box_position:12407;TATA-box_score=4.6517 TSS 3 12096 Score 1.7106 promoter:TATA.prATA-box_position:12062;TATA-box_score=4.2347 Total: 3 TSS(s) predicted</pre>

• If **Descriptions of genes** is clicked, a new page with descriptions of genes is displayed.

View and download data on classification of 576 experimentally verified promoters by promoter class and taxonomy

On Main Menu, if an option **Classification of promoters** is chosen, the following sub-menu is displayed, consisting of two options, **Summary** and **Individual Characteristics**:

Home	
Promoters from direct	laxonomic and promoter type classification of 576 experimentally verified promoters, including:
experiments	Summary of Species and Promoter Classification,
Putative TSS map for protein- coding genes	Individual Characteristics of Genes/Promoters and Original Data Sources
Classification of promoters	
Canonical NFMs	
Nucleotide composition	
Regulatory motifs	
Computation of NFMs	

• **Summary** option displays, a new page with a list of species represented in the experimentally verified promoter set, as well as total numbers and classes of promoters form each species:

Species	Taxon	TATA promoters	TATA-less promoters	TOTAL
Actinidia deliciosa	Dicot	1	-	1
Aegilops tauschii	Monocot	-	1	1
Antirrhinum majus	Dicot	2	1	3
Arabidopsis thaliana	Dicot	52	57	109
Atropa belladonna	Dicot	1	-	1
Avena fatua	Monocot	2	-	2
Avena sativa	Monocot	2	-	2
Bertholletia excelsa	Dicot	1	-	1
Beta vulgaris	Dicot	1	2	3
Betula pendula	Dicot	1	2	3
Brassica juncea	Dicot	1	-	1
Brassica napus	Dicot	6	2	8
Canavalia gladiata	Dicot	1	-	1
Capsicum annuum	Dicot	2	-	2
Catharanthus roseus	Dicot	3	2	5
Chlamydomonas reinhardtii	Chlorophyta	2	8	10
Chlorella vulgaris	Chlorophyta	-	1	1
Chlorococcum littorale	Chlorophyta	-	1	1
Citrus sinensis	Dicot	-	1	1
Craterostigma plantagineum	Dicot	2	4	6
Cucumis sativus	Dicot	3	-	3
Daucus carota	Dicot	3	-	3

 Individual Characteristics option loads a new page with information on genes compiled in DB, such as PlantProm DB accession number and gene/product, promoter class (type), GenBank accession number of a gene and a PubMed link to a publication that experimentally verified TSS(s) for a given gene:

	Monocotyledons: 11 species, 146 gen	es, 150 promot	ers	
Species	PlantProm DB Accession Number and Gene/Product	Promoter Type	GenBank Accession Number	PubMed Links/Refs
Avena fatua	PLPR0156: alpha-Amy2D	TATA	AJ010729	9862499
	PLPR0209: alpha-Amy2A	TATA	AJ010728	<u>9862499</u>
Avena sativa	PLPR0305: avenin	TATA	J05486	2351662
	PLPR0316: OGI-E1	TATA	X17637 EF396179	2326176
Aegilops tauschii	PLPR0203: starch synthase	TATA	AF258609	10859191
Dendrobium grex Madame Thong-IN	PLPR0464: DOMADS1*	TATA-less	AJ288901.1	<u>10938351</u>
-	PLPR0464: DOMADS1*	TATA-less	AJ288901.1	10938351
	PLPR0464: DOMADS1*	TATA-less	AJ288901.1	10938351
Hordeum vulgare	PLPR0037: Ids-2	TATA-less	D15051	8061321
	PLPR0038: RcaA1	TATA-less	M55449	2002016
	PLPR0054: nitrate reductase	TATA	X57845	1865878
	PLPR0055: Per1	TATA	X96551	<u>8914536</u>
	PLPR0136: B1 hordein	TATA	X03103	4059057
	PLPR0157: Amy32b	TATA	X05166 Y00107	3031602
	PLPR0167: Amy1	TATA	X54643	<u>1831055</u>
	PLPR0233: BKIN12	TATA-less	X65606	1302632
	PLPR0264: CHS	TATA	X58339	1863766
	PLPR0297: Kas12	TATA-less	M95172	2034657 1429736
	PLPR0317: Lem2	TATA	AY684928.1	15605240
	PLPR0321: HvPKABA1	TATA-less	AB058924.1	12029482
	PLPR0322: rsh1	TATA	AF182197.1	<u>10787050</u>
	PLPR0350: LOX1	TATA-less	U83904.1	9107039

Get a PubMed link for every entry of 576 experimentally verified promoters

In Main Menu, go: Classification of promoters **→** Individual Characteristics as described above.

Retrieve and download TATA-box and INR NFMs

In Main Menu, an option **Canonical NFMs** displays the following sub-menu with two options, **TATA-matrices** and **TSS-motif-matrices**:

Home	Nucleatide Fragment Matrices (NFNA) for examples have been also and TSS matifies
Promoters from direct experiments	Initiator element, Inr) computed for 576 experimentally verified promoters, including:
Putative TSS map for protein-	TATA-matrices for various promoter collections,
coding genes	TSS-motif-matrices for various promoter collections.
Classification of promoters	
Canonical NFMs	
Nucleotide composition	
Regulatory motifs	
Computation of NFMs	

• **TATA-matrices** option loads a page with TATA-matrices for various promoter collections (here shown only partially):

<4	<3	<2	<1	1	2	3	4	5	6	7	8	>1	>2	>3	
0.147	0.162	0.269	0.139	0.009	0.971	0.009	0.988	0.630	0.968	0.361	0.699	0.145	0.312	0.286	0
0.358	0.384	0.292	0.607	0.000	0.000	0.014	0.000	0.012	0.000	0.038	0.072	0.402	0.410	0.298	0
0.379	0.289	0.272	0.173	0.988	0.029	0.974	0.009	0.355	0.020	0.581	0.127	0.150	0.124	0.243	ŏ
У	У	n	с	т	A	т	A	W	А	W	A	S	m	n	
∋otide	Freque	ncies M	atrix fo	or TATA	box fro	om 256 e	experime	entally	verifi	ed dico	t plant	promote	ers		
eotide 	Freque:	ncies Ma	atrix fo	or TATA	box fro	om 256 e	experime	entally	verifi 6	ed dico	t plant	promoto >1	ers >2	>3	
eotide 	Freque: <3	ncies Ma <2	atrix fo	or TATA	box fro	om 256 e 3	experime	entally 5	verifi 6	ed dico 7	t plant 8	promoto >1	ers >2	>3	
eotide 	Freque: <3 0.172	0.272	atrix fo <1 0.152	0.020	box fro 2 0.972	om 256 e	experime 4 0.984	entally 5 0.604	verifi 6 0.960	ed dico 7 0.384	0.748	promot. >1 0.180	ers >2 0.356	>3	
eotide 	<pre>Freque: <3 0.172 0.368 0.136 </pre>	<pre>cies M. <2 0.272 0.272 0.296 0.120</pre>	atrix fo <1 0.152 0.560	0.020 0.004	box fro 2 0.972 0.000	om 256 e 3 0.004 0.016	0.984 0.000	0.604 0.012	verifi 6 0.960 0.000	ed dico 7 0.384 0.044	0.748 0.068	>1	>2 0.356 0.384 0.112	>3 0.288 0.260 0.184	
eotide 	<pre>Freque: <3 0.172 0.368 0.136 0.324</pre>	<pre></pre>	<pre>atrix fd <1 0.152 0.560 0.080 0.208</pre>	0.020 0.004 0.004 0.972	2 0.972 0.000 0.028	0m 256 e 3 0.004 0.016 0.000 0.980	experime 4 0.984 0.000 0.004 0.012	0.604 0.012 0.004 0.380	verifi 6 0.960 0.000 0.016 0.024	ed dico 7 0.384 0.044 0.012 0.560	8 0.748 0.068 0.072 0.112	>1 0.180 0.340 0.300 0.180	>2 0.356 0.384 0.112 0.148	>3 0.288 0.260 0.184 0.268	

• **TSS-motif-matrices** option loads a page with TSS-motif matrices for various promoter collections (shown here partially):

Nucl	leotide	Frequen	icies Ma	trix fo	r TSS r	notif f:	rom 236	experimentally	y verified	dicot	plant	TATA	promo	oters*	
	-4	-3	-2	-1	+1	+2	+3	+4							
A C	0.318	0.186	0.127	0.085	0.928	0.258	0.318	0.445 0.237							
G T	0.076 0.394	0.089 0.415	0.081 0.631	0.059 0.119	0.038	0.127 0.373	0.102 0.191	0.102 0.216							
	w	У	t	с	A	n	m	h							
Nucl	leotide	Frequen	cies Ma	trix fo	or TSS r	notif f:	rom 121	experimentally	y verified	dicot	plant	тата-	-less	promoters	3
Nucl	leotide 	Frequer -3	cies Ma ————————————————————————————————————	trix fo	or TSS r +1	notif f: +2	rom 121 +3	experimentally 	y verified	dicot	plant	TATA-	-less	promoters	3
Nuc]	-4 0.455	-3	-2 0.107	-1 0.157	or TSS r +1 0.579	0.446	rom 121 +3	experimentally +4 0.322	y verified	dicot	plant	TATA	-less	promoters	3
Nuc] A C	-4 -4 0.455 0.091 0.025	-3	-2 0.107 0.033 0.033	-1 0.157 0.595	+1 0.579 0.231	0.446 0.058	rom 121 +3 0.149 0.314 0.140	experimentally +4 0.322 0.124 0.099	y verified	dicot	plant	TATA	-less	promoters	3

W

Nucleotide composition of promoter regions

W

H

т

m

С

In Main Menu, an option Nucleotide composition calls the following sub-menu with a single option, Nucleotide composition:

w

У

which in turn, if clicked, loads a page with nucleotide composition of promoter regions before [-200:-1], and after [+1:+51] TSSs, for various promoter sets

	eotide comp	osition of	promoter re	gions befor	e [-200:-1]	and after	[+1:+51] TS	S in variou	s sets of e	experimentally	verified and predicted prop
403	dicot exper	imentally v	verified pro	moters							
	0.00-0.10	0.10-0.20	0.20-0.30	0.30-0.40	0.40-0.50	0.50-0.60	0.60-0.70	0.70-0.80	0.80-0.90	0.90-1.00	Nucleotide Frequencies
A G T A/T G/C	0/1 4/8 19/40 0/3 0/0 0/0	1/12 49/33 76/42 1/15 0/0 1/3	26/24 41/42 5/15 40/35 0/0 27/21	60/34 6/16 1/2 53/34 0/1 55/48	13/20 0/2 0/0 6/12 1/7 16/21	0/8 0/0 0/2 19/21 1/7	0/1 0/0 0/0 0/0 55/48 0/1	0/0 0/0 0/0 23/21 0/0	0/0 0/0 0/0 1/3 0/0	0/0 0/0 0/0 0/0 0/0	Genes with corresponding nucleotide composition, [-200:-1]/[+1:+51], %
256	dicot exper	0.10-0.20	verified TAT	2A promoters 0.30-0.40	0.40-0.50	0.50-0.60	0.60-0.70	0.70-0.80	0.80-0.90	0.90-1.00	Nucleotide Frequencies

Retrieve and download putative TFBS content of promoter sequences

In Main Menu, an option **Regulatory motifs** displays the following sub-menu with six options for 576 experimentally verified promoters and promoter regions for five species, as *O. sativa*, *Z. mays*, *M. truncatula*, *G. max* and *V. vinifera*:

Home	Statistically Cignificant Matifs of 2 022 known Diant Transprintion Factor Binding Sites and their
Promoters from direct experiments	Consensuses found in promoter sequences:
Putative TSS map for protein-	576 experimentally verified promoters, [-200:+51] region
coding genes	Promoter regions [-1000;+101] of 22,257 protein-coding genes from O. sativa
Classification of promoters	Promoter regions [-1000:+101] of 23,334 protein-coding genes from Z. mays
Canonical NFMs	Promoter regions [-1000:+101] of 18,226 protein-coding genes from M. truncatula
Nucleotide composition	Promoter regions [-1000:+101] of 38,702 protein-coding genes from G. max
Regulatory motifs	Promoter regions [-1000:+101] of 11,037 protein-coding genes from V. vinifera
Computation of NFMs	

 An option 576 experimentally verified promoters, [-200:+51] regions, shows a list of 576 genes:

Here, by clicking on PlantProm DB ID of a promoter (e.g. **PLPR0449** the data on statistically nonrandom motifs of 3,032 known plant transcription factor binding sites (TFBSs), predicted by Nsite program (Shahmuradov and Solovyev, Bioinformatics, 2015, 21:3544; see also **Related Links** option in Main Menu), can be viewed and downloaded:

```
> PLPR0449 ..AC:L07552.1 ..OS:Actinidia deliciosa ..GENE:actinidin protease ..[POD:actinidin protease ..[-200: +51] ..CDS: +58 ..TSS:201 (+1)
Nucleotide Frequencies: A - 0.36 C - 0.09 T - 0.31 C - 0.24

1 ggataaggat taaagaagga aaaaaaatta aattaaatta attaaatta attaaatta attaaatta tittittot tittittot tittittot tattaattaatta tittittot cittittota tigaatotgoa gittocaacag
101 aacotitaaa aaaaTTCTg aaatcatt tittaaatg cgtaagacco
151 coccaaccec caegegaccot ATATAAAggo catctitce citcoaattc
201 ACACACCTCC AATCCCAATC TTTTTTTTTTT AAAATTCAAA AAACGAGAGA
251 G
RE motifs found (positions are given in relation to TSS at 201; Mismatches - in lower case):
AC RSP00171 Mean Expected Number 0.009 +strand +45 : +50 GAGAGA
AC RSP00485 Mean Expected Number 0.001 -strand -125 : -134 AAAAAAGAGA
AC RSP00489 Mean Expected Number 0.003 +strand -41 : -35 CCACCA
AC RSP00933 Mean Expected Number 0.003 +strand -147 : -135 TTTTATTTTTT
Totally 4 motifs of 4 different REs have been found
Description of REs found
165. Group RE: GAGAGA motif /AC: RSP00171//OS: Phaseolus vulgaris /GENE: beta-phaseolin, or phas/RE: GAGAGA motif /TF: unknown
425. Group RE: GAGAGA motif /AC: RSP00171//OS: Phaseolus vulgaris /GENE: beta-phaseolin, or phas/RE: GAGAGA motif /TF: unknown
425. Group RE: GAGAGA motif /AC: RSP00171//OS: Phaseolus vulgaris /GENE: beta-phaseolin, or phas/RE: GAGAGA motif /TF: unknown
425. Group RE: CAGAGA motif /AC: RSP00171//OS: Phaseolus vulgaris /GENE: beta-phaseolin, or phas/RE: GAGAGA motif /TF: unknown
425. Group RE: AT-2a /AC: RSP00933//OS: Pinus sylvestris /GENE: GS1a/RE: AT-2a /TF: unknown
Download This Page
Download This Page
Download Promoter Sequence in FASTA Format
```

This page contains two options, **Download This Page** and **Download Promoter Sequence** in FASTA format.

 If one of the next five options of the sub-menu is chosen (e.g. Promoter regions [-1000: +101] of 22,257 protein-coding genes... (from *O. sativa* or another species), statistically non-random motifs of known TFBSs found in every gene of that species are displayed:

Search for experimentally verified promoters by PlantProm DB ID

In **Search services** of Main Menu, if an option **Search for promoters from direct experiments** is chosen, the following page is appears:

Sear	ch servi	се						
DNA sequences of 576 experimentally verified promoter regions [-200:+51] with TSS at +1.								
Get fas	sta							
Show	10 ᅌ entrie	es				Search:		
	ID 🔺	PubMed AC	Organism 🍦	Taxon 🍦	Gene 🔶	Product	TSS ≑	CDS 🔶
	PLPR0001	AB001920	Oryza sativa	Monocot	phospholipase D	phospholipase D	+355	201 (+1)
	PLPR0002	AB004648	Oryza sativa	Monocot	RepA	cysteine endopeptidase	+246	201 (+1)
	PLPR0003	AB013815	Arabidopsis thaliana	Dicot	DREB1A	DREB1A	+140	201 (+1)
	PLPR0004	AB013817, AB007789	Arabidopsis thaliana	Dicot	DREB1C	DREB1C	+153	201 (+1)
	PLPR0005	AF014927	Chlamydomonas reinhardtii	Chlorophyta	gpxh	glutathione peroxidase homolog		201 (+1) # Alternative TSS(s): +3 +5

Here, one or several promoters can be selected by (1) checking corresponding boxes to the left or or (2) performing search by a keyword, e.g. **PLPR057** (see pictures below). The following search options are applied: "ID" – promoter ID in DB; "Organism" – name of species (e.g.

Oryza sativa; "Taxon" – taxonomic group (e.g. Monocot); "Gene" – full name of a gene or a phrase included by the gene name; "Product" – full name of a gene product or a phrase included by gene product name; for the full list of species and taxonomic groups see: <u>http://www.softberry.com/data/plantprom/Links/Taxon_Table_1.htm</u>.

Se	ear	ch serv	/ice								
DN	NA s	equence	s of 576	exper	rimentally ve	erified promo	oter regions [[-200:+51] with	n TSS at +1.		
Ge	et fas	ta									
Sho	w	10 ᅌ ent	ries					Search	:		
6	3	ID	AC	Med 🍦	Organism		Gene	♦ Product	♦ TSS ♦	CDS	*
6	-	PLPR000	1 AB00	1920	Oryza sativa	Monocot	phospholi D	pase phospholip D	ase +355	201 (+1)	
C	~	PLPR0002	2 AB00	4648	Oryza sativa	Monocot	RepA	cysteine endopeptio	+246 dase	201 (+1)	
	_		3 4801	2015	Arabidopsis	Dicot			+140	201 (+1)	

Sear	rch servi	се						
DNA	sequences	of 576 experimentally ver	ified promoter regions [-2	200:+51]	with TSS at	+1.		
Get fa	sta							
Show	10 ᅌ entrie	es		Se	arch: PLPRO	57		
	ID 🔺	PubMed AC	Organism 🍦	Taxon 🔶	Gene 🍦	Product 4	TSS 🔶	CDS 🔶
	PLPR0570	M13938OS:Lycopersicon esculentum	Lycopersicon esculentum	Dicot	proteinase inhibitor I gene	Proteinase inhibitor I	+36	201 (+1)
	PLPR0571	X13437OS:Lycopersicon esculentumGENE:ethylene- responsive fruit ripening gene E8	Lycopersicon esculentumGENE:ethylene- responsive fruit ripening gene E8	Dicot	ethylene- responsive fruit ripening gene E8	E8 protein	+36	
	PLPR0572	X15855	Lycopersicon esculentum	Dicot	LAT52 gene		+111	201 (+1)
	PLPR0573	X02408	Phaseolus vulgaris	Dicot	dlec1	phytohemagglutinin PHA-E	+16	201 (+1)
	PLPR0574	X59139	Lycopersicon esculentum	Dicot	ACC2	1-aminocyclopropane- 1-carboxylic acid synthase 2	+153	201 (+1)

Afterwards, if Get fasta button is clicked, a page with FASTA sequences of selected promoters appears.

Gene list can be sorted by by GenBank accession number, organism name, gene name and gene product.

Search for putative TSS map for 22,257, 23,334, 18,226, 38,702 and 11,037 proteincoding genes of five species

In **Search services** option of Main Menu, click on **Search for putative TSS map for protein-coding genes**, and the following page is displayed:

Sear Putati Zea ma	ch service ve TSS map for 22, ays, Medicago trunc	257, 23,334, atula, Glycine	, 18,226 2 <i>max</i> an	o, 38,702 a d Vitis vin	ind 11,037 p if <i>era</i> , respec	rotein-codii tively.	ng genes of Oryza so	ıtiva,			
Get fas	ta Get gff3					Sear	ch:				
	ID 🔺	Organism 🍦	Chr	Strand	Start 🕴	End 🕴	Gene 🍦	Product \$	different mRNAs	Max Gene-mRNA ∲ distance	Max 5-UTR [♦]
	AC148152.3_FG005	Zea_mays	Chr2	-	231952642	231954277	AC148152.3_FG005	1-aminocyclopropane-1-carboxylate oxidase [Source:UniProtKB/TrEMBL;Acc:B6TBU1]	1	0	45
	AC148152.3_FG008	Zea_mays	Chr2	-	231879065	231883597	AC148152.3_FG008	Glycosyl hydrolase superfamily protein [Source:Projected from Arabidopsis thaliana (AT3G06510	1	0	45
0	AC148167.6_FG001	Zea_mays	Chr7	+	11670462	11676398	AC148167.6_FG001	Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:C0P7E6]	1	0	1965

Here, the following search options are applied: "ID" – promoter ID in the corresponding Ensembl genome annotation; "Organism" – one of five species (*Oryza sativa, Zea mays, Medicago truncatula, Glycine max* and *Vitis vinifera*); "Chr" – chromosome number (e.g. Chr 1); "Gene" – gene name accordingly to the Ensembl genome annotation; "Product" – full name of a gene product or a phrase included by gene product name; "different mRNAs" – number of alternative mRNAs from the corresponding Ensembl genome annotation. The selected promoters can be viewed and downloaded in two popular formats: FASTA (click on Get fasta and gff (click on Get fasta).

Moreover, the gene list can be sorted by gene ID, organism name, chromosome number, DNA strand, gene start position on chromosome, gene name, gene product and number of different mRNAs.

Perform BLAST comparison of user-given query sequence with promoter sequences collected in DB

In **Search services** option of Main Menu, if **BLAST search** option is chosen, the following page is displayed:

PlantPromDB_Blast - BLAST search in sequences of PlantPromDB
Paste your potential promoter sequence to find homology with DB promoters:
Alternatively, load a local file with sequence in Fasta format:
Local file name:
Browse No file selected.
Search in:
○ experimentally verified promoters db
○ Oryza sativa genome
○Zea mays genome
⊖ <i>Glycine max</i> genome
○ Medicago truncatula genome
○ Vitis vinifera genome
💿 all data bases
Alignment view options:
Pairwise ᅌ
Process Reset

To perform BLAST search, (1) Paste a query sequence in FASTA format or browse and select a file from the corresponding folder; (2) Choose a promoter set from the list given below; (3) Choose the alignment option (**Pairwise** or **Tabular**); and finally click **Process** button.

For example:

PlantPromDB_Blast - BLAST search in sequences of PlantPromDB

Paste your potential promoter sequence to find homology with DB promoters:	
tacccgtttttaacctcgcctcctcctccccggctcgagatccgtggccacgacgcgt	
ggtgggaaaccgggaacgacgtgcacgcacgcacacagggcaagtttcagtagaaaaatc	
gccggcatccagatcgggacAGTCTCTCTCTCCCGCAATTTTATAATCTCGCTCGATCC	
AATCTGCTCCC	
Alternatively load a local file with sequence in Easte formaty	
Alternatively, load a local file with sequence in Fasta format:	
Local file name:	
Browse No file selected.	
Searchin	
Oppression of the second secon	
o Oryza sativa genome	
2ea mays genome	
⊖ <i>Glycine max</i> genome	
○ Medicago truncatula genome	
○ Vitis vinifera genome	
🔿 all data bases	
Alignment view options:	
Pairwise 🗘	
Denet	
Process Reset	

Description of the header of FASTA files with promoter sequences in Module "Promoters from direct experiments"

The header of FASTA files contains the following information:

- **PLPRXXXX** : promoter ID in the DB;
- AC: GenBank accession number of a promoter;
- **OS**: name of organism/species;
- **GENE**: name of a gene;
- **PROD**: gene product;
- [-200:+51]: proximal promoter region including 200 bp upstream of the experimentally identified TSS (position +1) and 51 bp of the transcribed region (upper case letters);
- Taxon: name of the taxonomic group (Dicot, Monocot, etc.);
- Promoter: a class of promoter (TATA or TATA-less).

Description of the header of FASTA files for promoter sequences in Module "Putative TSS map for protein-coding genes"

The header of FASTA files contains the following information:

- **OS**: name of organism/species;
- **Chr**: the chromosome number;
- (+) or (-): DNA strand of gene location;
- **xxxxxxxxx.xxxxxxxx**: the annotated start and end positions of a gene on chromosome;
- **Gene**: name of a gene;
- mRNA/CDS: The annotated start position(s) of mRNA and corresponding coding sequence (CDS)^{*};
- **Product:** gene product;
- different mRNAs: number of alternative mRNAs annotated;
- Max 5-UTR: length of the longest 5'-untrslated region (UTR) of mRNA annotated;
- [-1000:+101]: promoter region including 1000 bp upstream of the annotated gene start (position +1) and 101 bp of the transcribed region.

^{*} If two or more different mRNAs are annotated, all Gene and mRNA pairs separated by coma are given.

Short description of approaches and tools applied for computation of nucleotide frequency matrices for various promoter elements, search for plant transcription factor binding sites and prediction of putative TSSs

To get unrelated set of promoters, a pairwise comparison of a region [-50:+1] of 586 plant promoters (including 305 entries from the first release of DB) has been performed and one of the couple of promoters showing more than 90% homology has been excluded from the initial collection. As a result, 10 promoters were excluded from the initial set of the collected promoter sequences.

In simple implementation of Expectation Maximization (EM) algorithm (Cardon, Stormo, 1992) we considered the sequence of motif $X=(x_1,x_2,...,x_i)$, where I is the motif length. If $P^i(x_j)$ is the empiric frequency of the nucleotide x_j in position i (computed on previous iteration), then the weight of this motif is computed as $W(X) = \log \prod P^i(x_j)/0.25$

Using the EM procedure for 10 iterations, the initial collection of 576 unrelated promoters was divided into the 2 classes: 345TATA and 231 TATA-less unrelated promoters. In calculations of TATA matrices the allowed variation of a distance between the right boundary of the TATA-core box and the TSS was 18-40 bp and only **TATAWAWA**-core was used for calculating the weight. As an initial TATA-box matrix, the TATA-matrix computed for 171 plant promoters from the first release of PlantProm DB (Shahmuradov et al., 2003) was used.

The TSS-motif matrix of 5 bp in length has been computed, where the 3rd nucleotide was the annotated (anTSS). No strong consensus was revealed. When the EM approach was used to analyze all possible penta-nucleotides with an assumed TSS (asTSS) location in the range [anTSS-2:anTSS+2], it was observed that the composition of asTSS-motifs is different in dicot and monocot plants, as well as for TATA and TATA-less promoters.

Search for statistically significant motifs of 1577 known plant transcription regulatory elements was performed by Nsite program (Shahmuradov, Solovyev, 2015; http://linux1.softberry.com/berry.phtml).

Search for putative TSSs in genomic sequences from was performed by TSSPlant program (Shahmuradov, Umarov and Solovyev, submitted to Nucl Acid Res).

REFERENCES

Cardon L and Stormo G (1992) Expectation maximization algorithm for identifying proteinbinding sites with variable lengths from unaligned DNA fragments. J. Mol. Biol., 5, 159–170 (PMID: <u>1731067</u>). Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV (2003) PlantProm: a database of plant promoter sequences. Nucleic Acids Res., 31: 114-117 (PMID: 12519961).

Shahmuradov IA, Solovyev VV (2015) Nsite, NsiteH and NsiteM computer tools for studying transcription regulatory elements. Bioinformatics, 31: 3544-3545 (PMID: <u>26142184</u>).