
SNNBP-Learn
The program implements the function of learning multi-layer perceptron neural network. 

Algorithm description.
The package implements the neural network of the multi-layer perceptron (MLP) topology. 
MLP topology description.
The  feed-forward  neural  network  model  transforms  input  signals  into  outputs.  The 
transformation occurs at the neural network units called neurons (Fig. 1). The neuron consists of 
the  weighted  summation  module  (denoted  as  Σ in  the Fig.  1)  and  non-linear  transformation 
module (denoted as F in the Fig. 1). Such neuron structure is called perceptron. 

Fig. 1. The structure of the neuron.

NET is the result of the weighted summation of the input signals  xi. OUT is the output of the 
single neuron, and it is the result of the non-linear transformation by activation function F of the 
NET value.
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x={xi} – the input signals vector,
w={wi} – weights,
θ - bias term,
F – neuron activation function,
NET-weighted sum of the input signals, 
OUT – output signal.

The  SNNBP  program  implements  the  feed-forward  neural  network  where  single  units  are 
connected in such way that output of one unit can be input to another unit. In the multi-layer 
perceptron topology units are combined in sets of layers with no connection of neurons within 
the layer. Neurons can input signals only from units of the previous layer and forward signals to 
the units of the next layer (Fig. 2). The number of neurons in the layer is arbitrary and set by 
user. The number of layers in the network is arbitrary (set by user). 

Fig. 2. The structure of the multi-layer perceptron.



There are three types of layers in such network. Fist is input layer, second is output layer, other 
layers called hidden. Neurons of the input layer make no transformations, they transmit the input 
signals to the first hidden layer. The SNNBP implements the algorithm that transformation of the 
the i-th neuron of the k-th layer as follows:
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where NETk,j is the weighted sum of the inputs for the i-th neuron of the k-th layer (i=1,Lk, Lk – 
the number of neurons in the k-layer).
OUTk,j  is the output value of the i –th neuron in the k-th layer.
wki={wkij} is the weight matrix, connecting the i –th neuron in the k-layer with the j–th neuron 
outputs (j=1,Lk-1) of the k-1 –th layer outputs.
wki0 is the bias for the i 0th neuron in the k-th layer.
F is  the activation  function,  the current  version of  the SNNBP program implement  sigmoid 
activation function:

F= 1
1exp −NET⋅c  ,

where с is the shape parameter (gain) that determines the slope of the sigmoid, when it is close to 
0, the slope of the sigmoid is softer,  if  the gain is large,  the shape is close to the step-wise 
function. The gain parameter is the same for all the neurons in the network. 

Fig. 3. The sigmoid activation function.

The SNNBP program allows  setting  the  network topology of  the  arbitrary size of  the  input 
vector, output vector, number of hidden layers and number of neurons per layer. The network 
topology is set by user, as a rule, the topology can be optimized by trial and error procedure by 
user. The network with the simple structure may not capture the relationship between the input 
and output variables sufficiently.  The multi-layer perceptron of the large size are more time-
consuming to learn and need the large size of the training set to estimate the weights of the 
network. It is usual practice to start with the simple topology, then add more neurons and control 
the error after the topology changes.
The network model considers numerical representation of the input and output variables. It is 
able to solve the following types of tasks. 
1). The non-linear regression or prediction. The neural network is trained to predict the output 
(target)  values using the input value.  In most  cases,  there  is  one (target)  value at  the neural 
network output tan need to be predicted. However multiple outputs can be predicted by SNNBP 
program also.
2).  Classification. The neural network should classify the input sample by its input values into 
several classes. To code the classes several approaches exist. If it is needed to classify samples 
into 2 classes, the output of the network can be the single value and the classifying decision is 
determined by threshold value.  Another  way is  to  associate  the  class value  to single  output 
neuron and to select class according to the neuron with maximal output. The last method allows 
classifying samples into arbitrary number of classes. 



The MLP learning procedure.
The idea behind the neural network is that the network can be trained to find the relationships 
between the input and output data. The learning process assumes the existence of the data for 
which the true relationship is known (supervised learning). The training data consist of samples 
for  which  the  relationship  between  the  inputs  x  and  outputs  o is  known.  For  the  specified 
network topology, learning procedure selects weights wki to minimize error between the outputs 
of the network and the true output values t (targets). 
For the single sample n the targets t are known and the outputs o of the network are calculated 
(the size of the output and target vectors are equal to M), then the error can be estimated as 
follows: 
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For the N samples total error estimate is 
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N

E n .

The learning task for the neural  network is formulated as to fond the network topology and 
corresponding network parameters (weights) with the minimal value E for some training data set.
This is the optimization problem. For neural network it can be solved numerically by steepest 
gradient method. The overall optimization scheme is as follows:
1). Set initial weight values if the MLP by random values [–0.5; 0.5]. 
2). Calculate the gradient direction. 
3). Change the weight values wkij (and biases  wki0) for the  α⋅dkij, where  α - is the step length 
(learning rate),  dkij is the vector of anti-gradient. 
4). Repeat steps 2-3 until the error changes during optimization procedure will be small enough. 

The  SNNBP  program  implement  slightly  different  optimization  based  on  the  error  back-
propagation algorithm. This is convenient and fast way for gradient calculation. This algorithm 
allow to calculate weight changes backward, from last layer to the first, the weights for the Lk 

level are calculated using the error estimates for the neurons in the  Lk+1 level. This allows to 
calculate all the weight changes recursively. The estimate of the gradient is possible in such a 
way that samples presented to the neural network sequentially. The learning process is divided to 
the “epochs”, during the epoch all the samples from the training data are presented to the neural 
network. This is so-called batch training option. 
The learning algorithm work as follows.
1). Set initial weight values if the MLP by random values [–0.5; 0.5].
2). Present the sample n from the training data to the network. 
3). Calculate the outputs o of the NN for the inputs x of the sample. 
4). Calculate the error between the outputs o and targets t for the sample n. 
5). Using the backpropagation algorithm estimates the gradient are calculated and change the 

neural network weights according the gradient values are made. 

6). Repeat steps 2-5 for all the samples from the training data. 
In this procedure, samples are presented to the network randomly during the epoch. The overall 
learning cycle consisted of the several epochs usually. The number of epochs per learning step is 
defined by user and selected by trial and error procedure. 

Momentum. 
Usually,  the gradient vector is estimated for current values of the network weights. The step 
length  in  the  anti-gradient  direction  is  α.  In  some  cases  the  optimization  efficiency can  be 
improved by adding to the descent vector at the current step the vector at the previous step with 



some coefficient (momentum). This allows searching optimum efficiently in the narrow ravines 
of the error surfaces. In this case the weight wkij changes (and wki0) made by the value α⋅(dkij + 
dkij(previous)*m), where α - descent step length (learning rate), dkij is the gradient direction at the 
current step,  dkij(previous) is the anti-gradient direction at the previous step,  m is momentum 
(ranges from 0 to 1). If the moment is equal to 0, the descent direction vector is determined from 
the current weight values. 

The learning protocol with early stopping.
If the network topology contains many weight parameters, it can over-fit the data in the learning 
process. This means that the network can recognize the data on which it was trained and cannot 
make generalizations for another data. This occur when the training data size is insufficient to fit 
the  large  number  of  parameters.  To  overcome  the  problem the  early  stopping  procedure  is 
implemented in the course of learning. 
The protocol requires additional set of data, validating data set. These data serve as additional 
check  for  stop  learning  process,  if  the  error  became  increasing  on  the  validating  data.  The 
protocol for earsly stopping is as follows. 
1). The number of training steps Nsteps is set.
2). At the each step the process of the learning by user-defined number of epochs is performed as 
described previously. 
3). After each step the error of the NN is estimated on the validating data. If the error is less than 
was obtained previously, the network parameters are saved. 
4).  Otherwise the  learning  process  continues  until  the number  of  learning  steps  is  less  than 
Nsteps or the error on the validating data is too large (say, 2 times larger than the minimal error 
obtained in previous steps). This process always saves the network parameters, which give the 
minimal error obtained during learning process for the validating data. The threshold parameter 
for large error deviation is set by the user. 
The error on the training data in this protocol usually decreases to the small value and became 
fluctuating after some steps of learning. The error on the validating data is also decreasing after 
some steps, but at some point it may became increasing (the point where over-fitting occur). This 
protocol allows overcoming the over-fitting problem efficiently. 

The SNNBP options.
The SNNBP program allows three options: learning, testing and prediction. 
First option (SNNBP –Learn) implement the back-propagation training algorithm and output the 
optimal NN structure, saved in the SNNBP internal format. It is also possible to save the network 
parameters in the C file that can be compiled as a separate module that  implements the NN 
evaluation by C-function. It also implement some additional features:

Internal  normalization. After  reading  all  the  data  are  normalized  in  such  a  way that 
variables are scaled to the interval [0.1;0.9]. There is no need in data normalization by 
user. The neural network prediction values are rescaled back after prediction to the initial 
data range.
Prediction  output. The program may save predicted  values  obtained  by best  network 
parameters for the training, validating and the testing data. 

Second, testing option (SNNBP-Test) implement testing of the previously obtained network on 
the user data. The file should contain both input and output values. The error estimate is printed 
out. User can also output predicted values (outputs) for test data into user-defined file. 
Third,  prediction  option  (SNNBP-Predict)  is  implemented.  In  this  option  neural  network 
calculate output values (predictions) using input values from the data file (target values need not 
be specified in this option). The predicted values are saved into user-defined file. The error is not 
calculated in this option. 
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