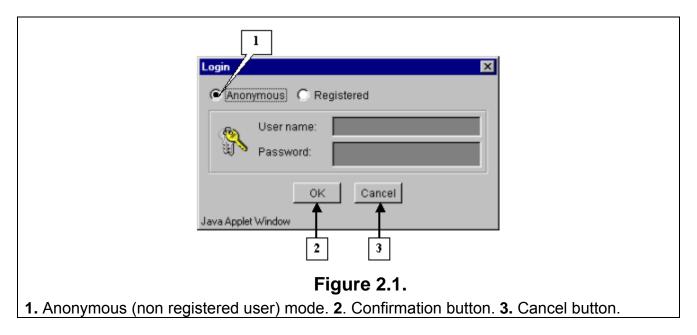
Content

1. Introduction	1
2. Application start and data loading	2
3. Selecting genes with high expression level in tumor tissues	10
4. Selecting genes with high expression level in normal tissues.	17
5. Selecting genes with highest correlation between expression profiles	24
6. Clustering genes by their expression profiles	
7. Building the tree of genes.	
8. Principal components analysis	49
9. Resume	
10. References	68

1. Introduction


software the data on Usina the "SelTag" gene expression from the "notterman2001 set1.txt" file were analyzed. The data consist of measured expression levels for approximately 7400 human cDNAs and ESTs (Human 6500 GeneChip Set, Affymetrix) in colon adenocarcinomas from several patients (Notterman et al., 2001). Expression levels were also measured in normal colon tissues. Totally the table contains the expression measurements for 18 tumor and 18 normal counterpart colon tissues. These data are divided into "Tumor" and "Normal" groups. Data in columns of expression matrix were normalized in such a way that average value was equal to 50. The aims of analysis were the following:

- 1. Identification of genes, highly expressed in tumorous tissues and lowly expressed in normal ones, which are supposed to be related to cells tumorigenicity;
- 2. Identification of genes, highly expressed in normal tissues and lowly expressed in tumorous ones;
- 3. Identification of genes with similar expression profiles;
- 4. Clustering genes by their expression profiles;
- 5. Analysis of principal components for genes expression matrix.

2. Application start and data loading.

2.1. On application start the "Login" dialog appears (fig. 2.1). Choose the "Anonymous" entry mode and press "OK".

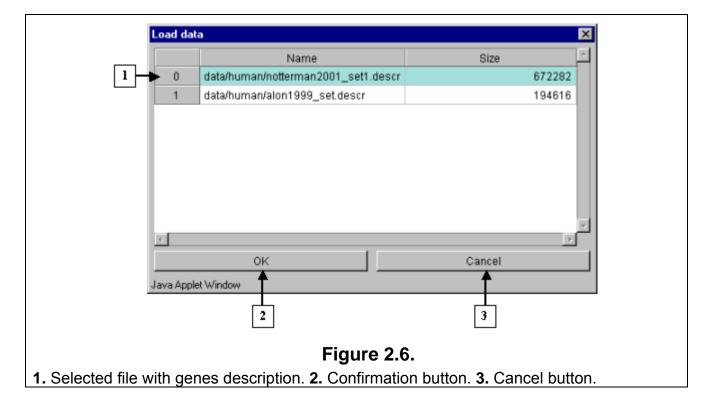
Note. "Anonymous" entry is purposed for use with demo data only.

2.2. Once the login procedure is over, the application main window appears. To load data from file, select the "File>Open data" command from the main menu (fig. 2.2).

🌺 Seltag					
File Edit View Select	Group	Analysis	Graph	Options	Help
Open data					
Upload data					
Data description					
Save					
Save as					
Close					
New project					
Open project					
Delete project					
Close project					
Link gene data					
Save gene data					
Unink gene data					
Link sequence					
Unink gene sequence					
Exit					
	Fig	ure 2	.2.		

2.3. It will cause the "Load data" window, containing the names of files with table data and information on their size (fig. 2.3.1), to appear. Choose the appropriate filename and press "OK". The "Wait" message window will appear indicating the data loading process, and once the process is over, it will disappear (fig. 2.3.2)

Load data	1		×
	Name	Size	-
0	data/human/alon1999_set.txt	1505618	
1 1	data/human/notterman2001_set1.bt	1410688	
x	ок	Cancel	
Java Apple	t Window	∱	
	2	3	
	Figure 2		
1. Selected file with exp	ression data. 2. Confirmati	on button. 3. Cancel buttor	n


Wait 🛛	Wait
Please wait while loading expression data	Please wait w
Java Applet Window	Java Applet Win
Figure 2.3.2.	

2.4. Table with selected data will be represented in the application main window.

2.5. To load a file with genes description, select the "File>Link gene data" command from the main menu (fig. 2.5).

ile Edit View Select	Group Analysis	Graph	Options Help
Open data	2	3	4
Upload data	scription	Sample	Tumor_27
Data description	nan liver c		-5
Save	nan liver c		1
Save as	nan liver c		2
Close	nan prion		26
h/ii	nan lymph		5
New project	nan class		18
Open project	nan liver c		1
Delete project	nan cytoch		153
Close project	nan pancr		-7
Link gene data	nan fetal li		1
Seive gene data	nan thymi		70
Unink gene data	nan mRN/		20
Link sequence	nan T cell		65
Unink gene sequence	nan mRN/		55
entric Bette exclusionse	nan mRN/		203
Exit	nan mRN/		254

2.6. The "Load data" dialog with list of files and information on their size (fig. 2.6) will appear. Choose the file of interest and press "OK".

2.7. The "Description load" dialog with invitation to use dynamic file loading mode (fig. 2.7) will appear. Press the "Yes" button.

Description load
The size of file is more than setted size from constraint. Whould you like to use dynamic load?
Yes No
Java Applet Window
Figure 2.7.

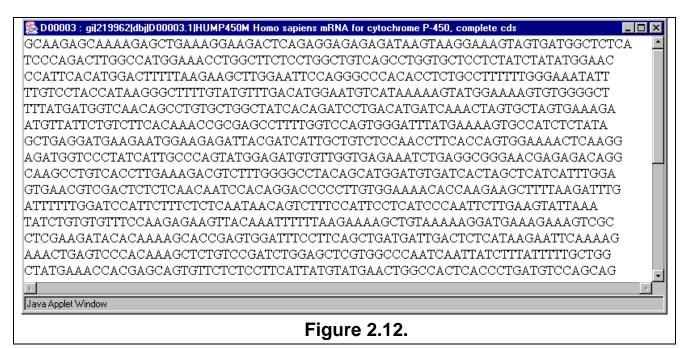
2.8. In contextual menu of the application main table (contextual menu can be called out by mouse right click) the "URLs>UniGene" command (fig. 2.8.1) will become active. This command opens you default web browser and, using the appropriate link, loads a gene card from UniGene database (fig. 2.8.2).

ile Edit	t View Sele	. , .						
	1	2		3	4	5	6	7
	cession Nur	nk Descr	iption	Sample	Tumor_27	Tumor_29	Tumor_34	Tumor
1	D00003		P-450 mRNA, complete c		-5	1	7	
2	D00003	JRLs	LiniGene		1	-4	-3	
3	D00003	Show sequence	complete c		2	7	1	
4	D00015	Show Sequence	A, human PrP 27-30 mF		26	13	13	
5		Show profile of expression	RNA, complete cds		5	2	0	
6	D00137		enydrogenase beta-1 sub		18	13	11	
7	D00173	Human liver cytochrome	P-450 mRNA		1	5	10	
8	D00265	Human cytochrome c mF	RNA, carboxyl-terminal reg		153	145	132	
9	D00306	Human pancreatic protea	ase E mRNA, complete co		-7	-7	-6	
10	D00408	Human fetal liver cytochro	ome P-450 (P-450 HFLa)		1	1	0	
11	D00596	Human thymidylate synta	se (EC 2.1.1.45) gene, co		70	138	73	
12	D00726	Human mRNA for ferroch	ielatase (EC 4.99.1.1)		20	17	22	
13	D00749	Human T cell surface and	tigen CD7 gene, exon 4		65	64	79	
14	D00760	Human mRNA for protea	some subunit HC3		55	63	72	
15	D00761	Human mRNA for protea	some subunit HC5		203	260	305	
16	D00762	Human mRNA for protea	some subunit HC8		254	327	355	
17	D00762	Human mRNA for protea	some subunit HC8		258	318	279	
18	D00763	Human mRNA for protea	some subunit HC9		68	73	79	
19	D00860	Human mRNA for phosp	horibosyl pyrophosphate		30	31	24	
20	D10040	Human mRNA for long-cl	hain acyl-CoA synthetase		12	65	28	
21	D10202	Human mRNA for platele	t-activating factor recepto		10	3	0	
22	D10216	Human mRNA for Pit-1/G	HF-1, complete cds		-5	-3	-1	
23	D10511	Human gene for mitocho	ndrial acetoacetyl-CoA th		28	81	60	
24	D10522	Human mRNA for 80K-L	protein, complete cds		63	74	70	
	let Window							+

	nternet Explorer orites <u>T</u> ools <u>H</u> e	elp								
← → → Back Forward		🔹 🛗 efresh Home	Search Favorite	لان s History	Mail		Edit	Discuss		
Address 🔄 http://www.no	cbi.nlm.nih.gov/UniG	aene/clust.cgi?ORG	=Hs&CID=178738						- 6	ir Go ∫Links
PubMed Nucle Search UniGene			Structure	Popset	Taxonomy Go Clear	-				-
Limits	Preview/Index	History	Clipboard	Deta						
<u>нсві</u>		er Hs.178738 Hom hrome P450, subf:	o sapiens unily IIIA (niphedipi	ne oxidase), po	lypeptide 4					
<mark>UniGene</mark> Query Tips FAQ DDD Download UniGene	SEE ALSO LocusLink: 1 OMIM: 1 HomoloGene: 1	24010								
Related Resources LocusLink HomoloGene		in and percent ide	PROTEIN SIMILA ntity and length of a 108280A cytochrom	ligned region	100 % / 503	aa				
dbEST Trace Archive CGAP	M.musculus:	[Homo sapiens] <u>pir:S50211</u> - S50 mouse	211 cytochrome P450) 3A13 -	(see <u>ProtEST</u> 74 % / 501 a (see <u>ProtEST</u>	a				
	Rnorvegicus:	<u>pir:JC4702</u> - JC4	702 cytochrome P450) 3A9 - rat	75 % / 503 a (see <u>ProtEST</u>	a				
	A.thaliana:		607 probable cytoch rity] - Arabidopsis tl		27 % / 489 a (see <u>ProtEST</u>					
	C.elegans:	[Caenorhabditis			32 % / 460 a (see <u>ProtEST</u>)				
			F2_DROME Prohebi	e crztochrome	33 0/6 / / 88 -	· •			🔹 Internet	
http://www.ncbi.nlm.nih.g	gov/entrez/query.fc/	gi/db=Popset							internet	

2.9. To load a file with genes nucleotide sequences, select the "File>Link sequence" command from the main menu (fig. 2.9).

Seltag	Group Analysis (Graph Opt	tions Help
Open data	2	3	4
Upload data	scription Sa	ample	Tumor_27
Data description	nan liver c		-5
Save	nan liver c		1
Save as	nan liver c		2
Close	nan prion		26
	nan lympt		5
New project	nan class		18
Open project	nan liver c		1
Delete project	nan cytoch		153
Close project	nan pancr		-7
Link gene data	nan fetal li		1
	nan thymic		70
Save gene data	nan mRN/		20
Unink gene data	nan T cell		65
Link sequence	nan mRN/		55
Unink gene sequence	nan mRN/		203
Exit	nan mRN/		254
	Figure 2.	9.	


2.10. The "Load data" dialog with files and information on their size (fig. 2.10) will appear. Select the file of interest and press "OK".

L	.oad data	1		×
		Name	Size	~
	0	data/human/alon1999_set.seq	3071422	
1	► 1	data/human/notterman2001_set1.seq	11294087	
	Ŧ		×	4
		OK	Cancel	
Ja	ava Apple	tWindow	Ť	
		2	3	
		Figure 2. ²	10.	
1	1. Sele	ected file. 2. Confirmation bu	tton. 3. Cancel button.	

2.11. The "Description load" dialog with invitation to use dynamic file loading mode (fig. 2.11) will appear. Press the "Yes" button

	Description load 🛛
	The size of file is more than setted size from constraint. Whould you like to use dynamic load?
	Yes No
	Java Applet Window
-	Figure 2.11.

2.12. In contextual menu of the application main table (contextual menu can be called out by mouse right click) the "Show sequence" command (fig. 2.8.1) will become active. This command opens a window with gene's nucleotide sequence (fig. 2.12).

2.13. To get a description of loaded data, select the "File>Data description" command from the main menu (fig. 2.13)

File Edit View Select	2	3	ptions Help 4
Upload data	scription	Sample	Tumor_27
Data description	nan liver c		
Save	nan liver c		
Save as	nan liver c		
Close	nan prion		4
	nan lympr		
New project	nan class		1
Open project	nan liver c		
Delete project	nan cytoch		15
Close project	nan pancr		-
Link gene data	nan fetal li		
Save gene data	nan thymi		7
Unink gene data	nan mRN/		2
Link sequence	nan T cell		e
	nan mRN/		9
Unink gene sequence	nan mRN/		20
Exit	nan mRN/		25

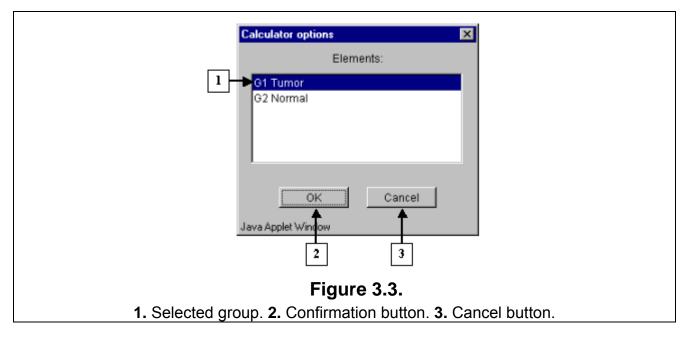
2.14. It will open the document with description and list of files for data "notterman2001_set1", located on the Softberry server (fig. 2.14).

	/descr/notterman2001_set1.html	🔻 🋃 Go 🛛 Links 🍟 📆
dress http://www.softberry.com/seltag/	descr/notterman2UU1_set1.ntml	
	Soft Benotterma	n2001_set1 SoftBerry
	ele: Notterman D. A., Alon U. , Sierk A. J., and Levine A cleotide Arrays", <i>Cancer Res.</i> 61 , 3124–3130 (2001) [<u>M</u>	. J. "Transcriptional Gene Expression Profiles of Colorectal Adenoma, Adenocarcinoma, and EDLINE abstract; Cancer Research full text].
NAs was also measured in normal c ppropriate groups: "Tumor" and "No orginal data has been taken from the <u>arcinomaNormalDatasetCancerRes</u>	colon tissues. Totally, the table contains expression measure ormal". e site <u>Microarray Databases</u> (November 2002 r.), <u>Notterm</u> <u>search txt</u> , file, displayed on this page. The order and nume	
verexpressed in tumorous tissues (wi	then compared to normal ones) and vice versa. The obtaine	resented in the notterman2001_set1.doc file. It has allowed to identify genes that are ed results were compared to that in the article Notterman et al (2001). Using hierarchical clustering is the genes that are preferably expressed in tumorous tissues, and another one - in normal tissues.
verexpressed in tumorous tissues (w nd principal components approaches	then compared to normal ones) and vice versa. The obtaine	ed results were compared to that in the article Notterman et al (2001). Using hierarchical clustering is the genes that are preferably expressed in tumorous tissues, and another one - in normal tissues.
verexpressed in tumorous tissues (w/ nd principal components approaches Complete list of files for " notterman2 File	then compared to normal ones) and vice versa. The obtained s, two clusters of genes were obtained. One cluster contain 001_set1" data that are on Softberry server:	ed results were compared to that in the article Notterman et al (2001). Using hierarchical clustering
verexpressed in tumorous tissues (w/ nd principal components approaches complete list of files for " notterman20 File notterman2001_set1.txt	then compared to normal ones) and vice versa. The obtained s, two clusters of genes were obtained. One cluster contain 001_set1" data that are on Softberry server: Size	ed results were compared to that in the article Notterman et al (2001). Using hierarchical clustering is the genes that are preferably expressed in tumorous tissues, and another one - in normal tissues. Description
verexpressed in tumorous tissues (w/ ad principal components approaches complete list of files for " notterman20 File notterman2001_set1.txt notterman2001_set1.descr	then compared to normal ones) and vice versa. The obtain s, two clusters of genes were obtained. One cluster contain 001_set1" data that are on Softberry server: Size 1,408 kb	ed results were compared to that in the article Notterman et al (2001). Using hierarchical clustering is the genes that are preferably expressed in tumorous tissues, and another one - in normal tissues. Description Data in SELTAG format Links for genes Unigene (sorted by their GenBank AC, field F1 "SequenceId" from file
verexpressed in tumorous tissues (w/ nd principal components approaches complete list of files for " notterman20 File notterman2001 set1 txt notterman2001 set1 descr notterman2001 set1.seq	then compared to normal ones) and vice versa. The obtaine s, two clusters of genes were obtained. One cluster contain 001_set1" data that are on Softberry server: Size 1,408 kb 657 kb	ed results were compared to that in the article Notterman et al (2001). Using hierarchical clustering is the genes that are preferably expressed in tumorous tissues, and another one - in normal tissues. Description Data in SELTAG format Links for genes Unigene (sorted by their GenBank AC, field F1 "SequenceId" from file notterman2001_set1.txt)
verexpressed in tumorous tissues (w/ nd principal components approaches complete list of files for " notterman20 File notterman2001 set1 txt notterman2001 set1 descr notterman2001 set1.seq notterman2001 set1.pdf	then compared to normal ones) and vice versa. The obtaine s, two clusters of genes were obtained. One cluster contain 001_set1" data that are on Softberry server: Size 1,408 kb 657 kb 11,029 kb	ed results were compared to that in the article Notterman et al (2001). Using hierarchical clustering is the genes that are preferably expressed in tumorous tissues, and another one - in normal tissues. Description Data in SELTAG format Links for genes Unigene (sorted by their GenBank AC, field F1 "SequenceId" from file notterman2001_set1.txt) Genes' sequences in FASTA format
verexpressed in tumorous tissues (w. nd principal components approaches Complete list of files for " notterman24	then compared to normal ones) and vice versa. The obtaine s, two clusters of genes were obtained. One cluster contain 001_set1" data that are on Softberry server: Size 1,408 kb 657 kb 11,029 kb 3.649 kb Soft B. Correy	ed results were compared to that in the article Notterman et al (2001). Using hierarchical clustering is the genes that are preferably expressed in tumorous tissues, and another one - in normal tissues. Description Data in SELTAG format Links for genes Unigene (sorted by their GenBank AC, field F1 "SequenceId" from file notterman2001_set1.txt) Genes' sequences in FASTA format Example of data analysis by mean of SELTAG (pdf)
verexpressed in tumorous tissues (w/ nd principal components approaches Complete list of files for " notterman21 File notterman2001_set1.txt notterman2001_set1.descr notterman2001_set1.seq notterman2001_set1.pdf notterman2001_set1-example.html	then compared to normal ones) and vice versa. The obtaine s, two clusters of genes were obtained. One cluster contain 001_set1" data that are on Softberry server: Size 1,408 kb 657 kb 11,029 kb 3.649 kb 70 kb	ed results were compared to that in the article Notterman et al (2001). Using hierarchical clustering is the genes that are preferably expressed in tumorous tissues, and another one - in normal tissues. Description Data in SELTAG format Links for genes Unigene (sorted by their GenBank AC, field F1 "SequenceId" from file notterman2001_set1.txt) Genes' sequences in FASTA format Example of data analysis by mean of SELTAG (pdf) Example of data analysis by mean of SELTAG (html)
verexpressed in tumorous tissues (w/ nd principal components approaches Complete list of files for " notterman21 File notterman2001_set1.txt notterman2001_set1.descr notterman2001_set1.seq notterman2001_set1.pdf notterman2001_set1_example.html notterman2001_set1_ori.txt	then compared to normal ones) and vice versa. The obtaine s, two clusters of genes were obtained. One cluster contain 001_set1" data that are on Softberry server: Size 1,408 kb 657 kb 11,029 kb 3.649 kb 70 kb 1,410 kb	ed results were compared to that in the article Notterman et al (2001). Using hierarchical clustering is the genes that are preferably expressed in tumorous tissues, and another one - in normal tissues. Description Data in SELTAG format Links for genes Unigene (sorted by their GenBank AC, field F1 "SequenceId" from file notterman2001_set1.txt) Genes' sequences in FASTA format Example of data analysis by mean of SELTAG (pdf) Example of data analysis by mean of SELTAG (html) Original file with data on genes expression

3. Selecting genes with high expression level in tumor tissues.

In this chapter there is an example of how to select genes, which are expressed above average (more than 50) in, at least, 80% of tumorous tissues and, at the same time, below average (less than 50) in, at least, 80% of normal ones. The previously described dividing of experiments into two groups (in accordance with tissue types) – tumorous (G1) and normal (G2) – in the notterman2001_set1.txt file makes the solving of this task much easier.

To perform this task, the following steps are required:


3.1. Select the "Select>Select genes by query..." command from the main menu (fig. 3.1).

🌺 Seltag	1						
File Edit		Select Group	Analysis	Graph	Options Help		
	1	Select genes	by query		3		<u> </u>
	cession	a la Malalata			Sample	Tum	r_35 Tu
1	D0000(✓ Initial data				i	6
2	D0000(Remove all se	ections				-3
				Fig	gure 3.1.		

3.2. The "Make selection" dialog will appear (fig. 3.2). For the first, select a target group to satisfy selection criteria. In the "Group" section press the "Select" button (fig. 3.2).

					Clear Expr.	Calculate scores for
\$G1:type=IVALUE,fields[18]: 3;4;5;6; Field	7;8;9;10;11;1	0K	s	an	Cancel	last selection
F1 Accession Number	Select	AND	OR	NOT	()	
	Insert	==	>	4	=	
Text values for field		>=	<=	POW	SQRTO	
D00003	Select				Joanny	
· · · · · · · · · · · · · · · · · · ·	Inse 2	7	8	9	+	
- Group	<u>— / т</u>	4	5	6	-	Select cards with best scores
G1 Tumor	Select	1	2	3	*	
Input condition level:	Insert	0		ABS0		Type Not applied
Card No.						Value 1
Card index number designation	Insert					
wa Applet Window						

3.3. The "Calculator options" dialog with the complete list of groups in the table (fig. 3.3) will appear. In the list select a target group, for which the first part of constrains will be set. In our case, this is group «G1 Tumor». After selection press the "OK" button.

3.4. In the "Make selection" dialog the following changes will occur (fig. 3.4):

- In the text area, the number and the name of selected group will appear: G1 Tumor
- In the status bar, the information on this group will be shown:
 \$G1:type=IVALUE,fields[18]: 3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20;

3.5. In the field of additional constraints "Input condition level:" specify the threshold as a percentage share in a group:

80%

3.6. The selected group ID and selection criteria should be inserted into expression line. To do this, press the "Insert" button. In the expression line the following will appear (fig. 3.4): \$G1:80%

3.7. Using buttons of query entering specify the first part of condition in the expression line (fig. 3.4):

\$G1:80%>50

Search expression:						Expr. score options
\$G1:80%>50					Clear Expr.	Calculate scores for
\$G1:type=IVALUE,fields[18]: 3;4;5;6	;7;8;9;10;11;1	OK	S	an	Cancel	last selection
F1 Accession Number	Select	AND	OR	NOT	()	
	Insert	==	>	<	!=	
D00003	Select	>=	¢	POW	SQRT()	
	Insert	7	8	9	+	
Group	1 5	4	5	6		Select cards with best sco
G1 Tumor	Selet	1	2	3	*	Type Not applied
Input condition level: 80%	Insert	0		ABS()	1	Value 1
Card No.			•			
Card index number designation	Insert		б	7		

Figure 3.4.

1. Expression line with selection criteria. **2.** Status bar with information on selected field. **3.** Number and ID of selected group. **4.** Field for additional constraints. **5.** The "Insert" button for insertion of the group ID with additional constraint into expression line. **6.** Query entering buttons.

3.8. Add the "&" symbol into expression line by pressing the "And" button in the query entering section.

3.9. Finally, specify the second part of selection criteria. It can be done by the same way, as described in 3.2-3.7, with the only exception: select the group G2 Normal and add a constraint for it:

\$G2:80%<50

The final expression is shown on figure 3.5.

	Search expression: \$G1:80%>50&\$G2:80%<50				б 	Clear Expr.	Expr. score options
2	G2:type=IVALUE,fields(18): 21;22;23	3;24;25;26;2;	0K		an _	Cancel	last selection
	F1 Accession Number	Select	AND	OR	NOT	()	
		Insert	==	>	<	=	
	Text values for field D00003	Select	>=	43	POW	SQRT()	
		Insert	7	8	9	+	
_	Group 4	5	4	5	6		Select cards with best scores
3	G2 Normal	Sel ct	1	2	3	*	Type Not applied 💌
	Input condition level: 80%	Insert	0		ABS()	1	Value 1
	Card No. Card index number designation	Insert		7]		

Figure 3.5.

1. Expression line with selection criteria. **2.** Status bar with information on selected field. **3.** Number and ID of selected group. **4.** Field for additional constraints. **5.** The "Insert" button for insertion of the group ID with additional constraint into expression line. **6.** Button for search start. **7.** Query entering buttons.

3.10. To start the search process press the "Scan" button (fig. 3.5). As a result, all genes, overexpressed in, at least, 80% of tumorous tissues, and downexpressed in 80% of normal ones, will be found and selected.

3.11. Once the selection is finished, information on the number of found genes will be represented in the status bar (fig. 3.6), and the "OK" button will become active.

Search expression:	_ 1 _	2	:]			Expr. score options
\$G1:80%>50&\$G2:80%<50 21 cards selected. To exit hit <ok>b</ok>	uttok.	ОК	S	an j	Clear Expr. Cancel	last selection
Field F1 Accession Number	Select	AND	OR	NOT	()	
	Insert	==	>	<	!=	
Text values for field D00003	Select	>=	<=	POW	SQRT()	
	Insert	7	8	9	+	
Group		4	5	6	•	Select cards with best scores
G2 Normal	Select	1	2	3	*	Type Not applied
Input condition level: 80%	Insert	0		ABS()	J.	Value 1
Card No. Card index number designation	Insert					
ava Applet Window						

1. Information on the number of found genes. 2. Button for accepting the search results.

3.9. Press the "OK" button.

3.10. In the application main window the table with selected genes (fig. 3.7) will be represented. In the «Select» section of the main window menu an additional item with the name corresponding to selected set of genes will appear. During the project run, the obtained sets of genes can be saved and remained available by simple switching between them. To remove the list of tables use the «Remove all selections» command.

Table obtained in this example includes 21 genes. Some of selected genes are also identified as transcripts that overexpressed in tumorous tissues (when compared to their normal counterparts) in the article by Notterman et al [1] (see table 1 in this article). These genes are:

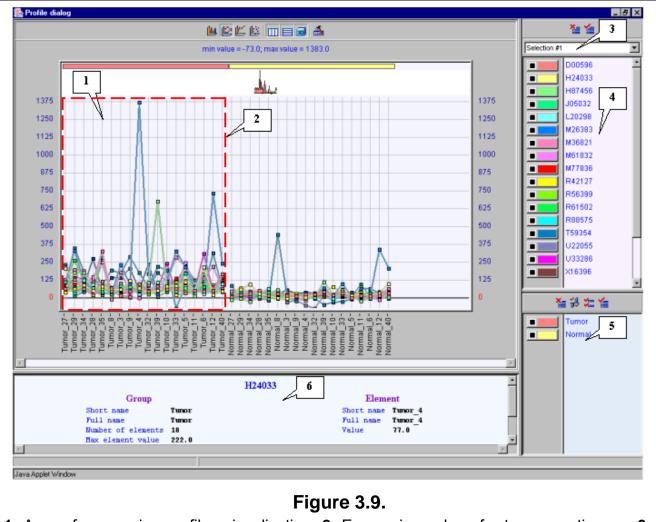
X54489 Human gene for MGSA

U22055 Human 100 kDA coactivator mRNA, complete cds

M61832 Human S-adenosylhomocysteine hydrolase (AHCY) mRNA, complete cds M36821 Human cytokine (GRO-g) mRNA, complete cds

U33286 Human chromosome segregation gene homolog CAS mRNA, complete cds X54942 H. sapiens CKSHS2 mRNA for CKS1 protein homologue

	1	Select genes by query		2	3	4	5	
	cession	Initial data	L_	Description	Sample	Tumor_27	Tumor_29	
1	D00596	✓ initialData +\$G1:80%>508\$G2:80%<50	(.45) ge	ne, complete cds		70	138	
2	H2403		lone 516	99 3' similar to gb:K02276 MYC PROTO-ONCOGENE PROTEIN		215	123	
3	H87456	initialData +\$G1:80%<50&\$G2:80%>50	one 252	485 3'		75	186	
4	J05032	Remove all selections	pha-2 su	ibunit mRNA, complete cds		121	41	
5	L20298	Homo sapiens transcription factor	^{(C} 2	RNA, 3' end		66	127	
6	M26383	Human monocyte-derived neutroph	nik 🖆	ig protein (MONAP) mRNA, complete cds		114	338	
7	M36821	Human cytokine (GRO-gamma) mi	RN/ com	plete cds		137	206	
8	M61832	Human S-adenosylhomocysteine h	ydrolase	(AHCY) mRNA, complete cds		224	198	
9	M77836	Human pyrroline 5-carboxylate redu	uctase mR	RNA, complete cds		108	106	
10	R42127	yf90g02.s1 Homo sapiens cDNA c	lone 2979	9 3' similar to gb:M30496 UBIQUITIN CARBOXYL-TERMINAL HY		45	73	
11	R56399	yg90a12.s1 Homo sapiens cDNA (lone 406	50 3'		79	111	
12	R61502	yh16a01.s1 Homo sapiens cDNA o	lone 376	79 3'		111	77	
13	R88575	ym95f04.s1 Homo sapiens cDNA (lone 166	687 3' similar to gb:X67688 TRANSKETOLASE (HUMAN);		102	111	I
14	T59354	yb57e03.s1 Homo sapiens cDNA o	lone 752	92 3'		240	20	
15	U22055	Human 100 kDa coactivator mRNA	, complet	e cds		138	93	
16	U33286	Human chromosome segregation	gene hon	nolog CAS mRNA, complete cds		96	76	
17	X16396	Human mRNA for NAD-dependent	methylen	e tetrahydrofolate dehydrogenase cyclohydrolase (EC 1.5.1.15)		70	150	
18	X16901	Human mRNA for RAP30 subunit of	oftranscri	ption initiation factor RAP30/74		57	72	
19	X54489	Human gene for melanoma growth	n stimulati	ory activity (MGSA)		123	271	
20	X54942	H.sapiens ckshs2 mRNA for Cks1	protein h	omologue		98	359	
21	X57766	Human stromelysin-3 mRNA				96	40	


Figure 3.7.

1. Additional menu item that corresponds to obtained genes set. **2.** Table with selected genes.

3.11. To visualize expression profiles for selected genes, use the "Graph>Specified with current selection" command from the main menu (fig. 3.8).

畿 Seltag		
File Edit View Select	Group Analysis Graph Options Help	
1	Specified with current selection	
cession Numb	Description	r_29
	Figure 3.8.	

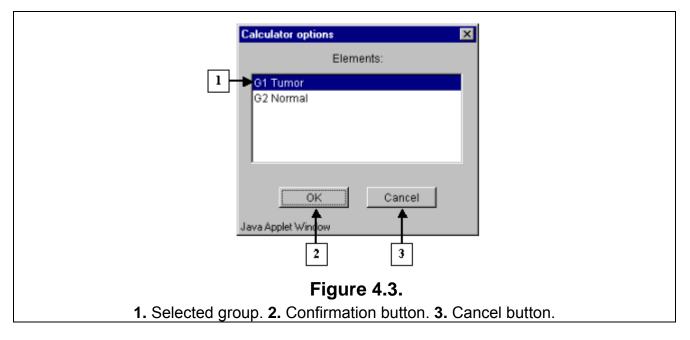
3.12. The "Profile dialog" window with expression profiles for selected genes (fig. 3.9) will appear. It is notable that expression profiles of all represented genes are higher for tumorous tissues (profiles inside the red rectangle) than for normal ones (profiles outside the red rectangle).

1. Area of expression profiles visualization. **2.** Expression values for tumorous tissues. **3.** List of genes sets. **4.** List of genes. **5.** List of tissues groups. **6.** Information on gene, profile of which is pointed by mouse.

4. Selecting genes with high expression level in normal tissues.

In this chapter there is an example of how to select genes, which are expressed above average (more than 50) in, at least, 80% of normal tissues and, at the same time, below average (less than 50) in, at least, 80% of tumorous ones.

To perform this task, the following steps are required:


4.1. Select the "Select>Select genes by query..." command from the main menu (fig. 4.1).

Selt File Ed		Select Group	Analysis	Graph	Options Help			×
	1	Select genes	by query		3			
	cession				Sample	Tum	r_35 T	
1	D00003	✓ Initial data					6	
2	D00003	Remove all s	elections				-3	
				Fi	gure 4.1.			

4.2. The "Make selection" dialog will appear (fig. 4.2). For the first, select a target group to satisfy selection criteria. In the "Group" section press the "Select" button (fig. 4.2).

					Clear Expr.	Calculate scores for
\$G1.type=IVALUE,fields[18]: 3;4;5;6; Field	7;8;9;10;11;1	0K	s	can	Cancel	last selection
F1 Accession Number	Select	AND	OR	NOT	()	
	Insert	==	≻	<	1=	
Text values for field Toology	Select	>=	<=	POW	SQRT()	
	Inse 2	7	8	9	+	
Group		4	5	6	-	Select cards with best scores
G1 Tumor	Select	1	2	3	*	Type Not applied 💌
Input condition level:	Insert	0		ABS()	1	Value 1
Card No. Card index number designation	Insert					
va Applet Window						

4.3. The "Calculator options" dialog with the complete list of groups in the table (fig. 4.3) will appear. In the list select a target group, for which the first part of constrains will be set. In our case, this is group «G1 Tumor». After selection press the "OK" button.

4.4. In the "Make selection" dialog the following changes will occur (fig. 4.4):

- In the text area, the number and the name of selected group will appear: G1 Tumor
- In the status bar, the information on this group will be shown:
 \$G1:type=IVALUE,fields[18]: 3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20;

4.5. In the field of additional constraints "Input condition level:" specify the threshold as a percentage share in a group:

80%

4.6. The selected group ID and selection criteria should be inserted into expression line. To do this, press the "Insert" button. In the expression line the following will appear (fig. 4.4): \$G1:80%

4.7. Using buttons of query entering, specify the first part of condition in the expression line (fig. 4.4):

\$G1:80%>50

\$G1:80%<50				_	Clear Expr.	Calculate scores for
01.00%~50					Clear Expr.	last selection
\$G1:type=IVALUE,fields[18]: 3;4;5;6;7	;8;9;10;11;1		se	an 📔	Cancel	
Field		_				
F1 Accession Number	Select	AND	OR	NOT	()	
	Insert					
Text values for field		==	>	<	!=	
D00003	Colort	>=	<=	POW	SQRT()	
1000003	Select					
	Insert		8	9	+	
Group 4	5	4	5	6	-	Select cards with best score
G1 Tumor	Sel ct	1	2	3	*	
Input condition level: 80%	Insert			ABSO		Type Not applied
- Cord No						Value 1
	Luce 1		Ē	L		
Card index number designation	Insert		б			
Input condition level: 80% Card No. Card index number designation	Insert			ABSO	1	Value 1

Figure 4.4.

Expression line with selection criteria. 2. Status bar with information on selected field.
 Number and ID of selected group. 4. Field for additional constraints. 5. The "Insert" button for insertion of the group ID with additional constraint into expression line. 6. Query entering buttons.

4.8. Add the "&" symbol into expression line by pressing the "And" button in the query entering section.

4.9. Finally, specify the second part of selection criteria. It can be done by the same way, as described in 3.2-3.7, with the only exception: select the group G2 Normal and add a constraint for it:

\$G2:80%>50 final expression is show

The final expression is shown on figure 4.5.

Search expression: \$G1:80%<50&\$G2:80%>50				6	Clear Expr.	Expr. score options
\$G2:type=IVALUE,fields[18]: 21;22;2	23;24;25;26;2;	0K	s	can	Cancel	last selection
F1 Accession Number	Select	AND	OR	NOT	()	
	Insert	==	>	<	!=	
D00003	Select	>=	œ	POW	SQRT()	
	Insert	7	8	9	+	
Group	5	4	5	6		Select cards with best scores
G2 Normal	Select	1	2	3	*	Type Not applied
Input condition level: 80%	Insert	0		ABS()	1	Value 1
Card No.						value [i
Card index number designation	Insert		7			

Figure 4.5.

1. Expression line with selection criteria. **2.** Status bar with information on selected field. **3.** Number and ID of selected group. **4.** Field for additional constraints. **5.** The "Insert" button for insertion of the group ID with additional constraint into expression line. **6.** Button for search start. **7.** Query entering buttons.

4.10. To start the search process press the "Scan" button (fig. 4.5).

4.11. Once the selection is finished, information on the number of found genes will be represented in the status bar (fig. 4.6), and the "OK" button will become active.

4.12. Press the "OK" button.

Search expression:	1	2				Expr. score options
\$G1:80%<50&\$G2:80%>50		/			Clear Expr.	Calculate scores for
34 cards selected. To exit hit < OK > 1 Field	button.	ок	S	an	Cancel	last selection
F1 Accession Number	Select	AND	OR	NOT	()	
	Insert	==	>	<	!=	
Text values for field		>=	<=	POW	SQRTO	
D00003	Select					
	Insert	7	8	9	+	
Group		4	5	6		Select cards with best scores
G2 Normal	Select	1	2	3	*	Type Not applied
Input condition level: 80%	Insert	0		ABS()	1	Type Not applied Value 1
Card No.						
Card index number designation	Insert					
va Applet Window						

4.13. In the application main window the table with selected genes (fig. 4.7) will be represented. In the «Select» section of the main window menu an additional item with the

represented. In the «Select» section of the main window menu an additional item with the name corresponding to selected set of genes will appear. During the project run, the obtained sets of genes can be saved and remained available by simple switching between them. To remove the list of tables use the «Remove all selections» command.

Table obtained in this example includes 34 genes. Some of selected genes are also identified as transcripts that overexpressed in normal tissues (when compared to their tumor counterparts) in the article by Notterman et al [1] (see table 2 in this article). These genes are:

M83670 Human carbonic anhydrase IV mRNA, complete cds

X64559 H. sapiens mRNA for tetranectin

T54547 H. sapiens cDNA similar to M84526 complement factor D precursor

M95936 Human protein-serine/threonine (AKT2) mRNA, complete cds

T46924 H. sapiens cDNA similar to gb:U11863 amiloride-sens amine oxidase

L11708 Human 17 b-hydroxysteroid dehydrogenase type 2 mRNA, complete cds

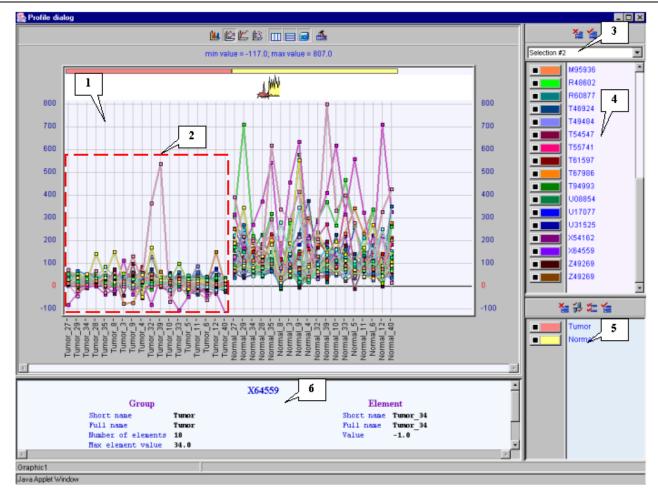
H54425 H. sapiens cDNA similar to gb:M10942_cds1 human metallothionein-le gene

H77597 H. sapiens cDNA similar to gb:X64177 H. sapiens mRNA for metallothionein

T67986 H. sapiens cDNA clone 82030 39 similar to gb:X14723 clusterin precursor U17077 Human BENE mRNA, partial cds

U08854 Human UDP glucuronosyltransferase precursor (UGT2B15) mRNA, complete cds

e Ed	t View Se	lect Group Analysis Graph Options	Help						1 × (6
	1 :	Select genes by query		3	4	5	6	7	8
	cession	initial data	1	Sample	Tumor_27	Tumor_29	Tumor_34	Tumor_28	Tumor_35
3	D42041	ntialData +\$G1:80%>508\$G2:80%<50	فمحمد وا		35	42	37	40	91
4	H02611		ne 151324 3'		59	26	17	46	51
5	H544Z:	nitialData +\$G1:80%-508\$G2:80%>50	one 203126 3' similar to gb:M1094:		39	24	22	27	4
6	H7417(Remove all selections	one 232584 3'		20	73	56	42	38
7	H77597	ys08a06.s1 Homo sapiens cDNA	clone 214162 3' similar to gb:X64177		76	22	35	73	-26
8	L11708	Human 17 beta hydroxysteroid del			12	-43	11	22	50
9	L11708	Human 17 beta hydroxysteroid del	e type 2 mRNA, complete		14	15	17	11	36
10	M16451	Human creatine kinase b-subunit	mF A, complete cds		71	34	20	147	48
11	M28882	Human MUC18 glycoprotein mRN	A complete cds		65	62	41	25	32
12	M36634	Human vasoactive intestinal pepti	de (VIP) mRNA, complete cds		18	18	29	26	17
13	M63603	Human phospholamban mRNA, c	omplete cds		23	16	16	28	5
14	M64110	Human caldesmon mRNA, compl	ete cds		72	15	40	32	7
15	M83088	Human phosphoglucomutase 1 (F	PGM1) mRNA, complete cds		46	11	29	45	32
16	M83670	Human carbonic anhydrase IV mR	NA, complete cds		-81	-30	-1	4	-34
17	M91463	Human glucose transporter (GLU	F4) gene, complete cds		29	27	32	28	36
18	M95936	Human protein-serine/threonine Ø	AKT2) mRNA, complete cds		54	-17	-8	49	4
19	R48602	yj65f01.s1 Homo sapiens cDNA c	one 153625 3' similar to SP:T15B12.		36	8	27	65	27
20	R60877	yh08e11.s1 Horno sapiens cDNA	clone 42396 3'		37	33	23	25	15
21	T46924	yb11b02.s1 Homo sapiens cDNA	clone 70827 3' similar to gb:U11863		34	17	20	25	21
22	T49484	ya75h03.s1 Homo sapiens cDNA	clone 67541 3' contains Alu repetitive		8	22	50	37	65
23	T54547	yb40h03.s1 Homo sapiens cDNA	clone 73685 3' similar to gb:M84526		34	-2	5	45	-7
24	T55741	yb40d07.s1 Homo sapiens cDNA	clone 73645 3' similar to SP:TELO_F		25	9	4	22	-5
25	T61597	yb74h08.s1 Horno sapiens cDNA	clone 76959 3' similar to SP:JH0628		63	29	42	59	33
26	T67986	yc28e12.s1 Homo sapiens cDNA	clone 82030 3' similar to gb3(14723)		20	16	17	26	40
27	T94993	ye38a07.s1 Horno sapiens cDNA	clone 119988 3' similar to gb:M8777		47	47	36	36	16
28	U08854	Human UDP glucuronosyttransfer	ase precursor (UGT2B15) mRNA, co		21	22	59	57	16
29	U17077	Human BENE mRNA, partial cds			16	40	35	29	47
30	U31525	Human glycogenin mRNA, comple	ete cds		41	26	33	26	37
31	X54162	Human mRNA for a 64 Kd autoant	igen expressed in thyroid and extra-o		27	12	5	26	4
32	X64559	H.sapiens mRNA for tetranectin			9	-3	-1	19	9
33	Z49269	H.sapiens gene for chemokine H0	C-1		18	12	29	28	39
34	Z49269	H.sapiens gene for chemokine HO	0-1		42	27	44	51	38


Figure 4.7.

1. Additional menu item that corresponds to obtained genes set. **2.** Table with selected genes.

4.14. To visualize expression profiles for selected genes, use the "Graph>Specified with current selection" command from the main menu (fig. 4.8).

🅵 Seltag									
File Edit		Select	Group	Analysis	Graph	Options	Help		
	1				Spec	ified with	current sele	ction	
c	ession I	Numb				Des	cription		ir_29
					F	igure	e 4.8.		

4.15. The "Profile dialog" window with expression profiles for selected genes (fig. 4.9) will appear.

Figure 4.9.

1. Area of expression profiles visualization. **2.** Expression values for tumorous tissues. **3.** List of genes sets. **4.** List of genes. **5.** List of tissues groups. **6.** Information on gene, profile of which is pointed by mouse.

It is notable that expression profiles of all represented genes are lower for tumorous tissues (profiles inside the red rectangle) than for normal ones (profiles outside the red rectangle).

5. Selecting genes with highest correlation between expression profiles

From genes overexpressed in tumorous tissues we have selected the "Human gene for melanoma growth stimulatory activity (MGSA)", GenBank accession number X54489.

In current chapter it is described how to find genes having expression profiles similar to that of MGSA. As the similarity measure, the Pearson's correlation coefficient for expression profiles will be used.

To perform this task, the following steps are required:

5.1. Use the "Analysis>Correlations>Select most correlated genes" command from the main menu to call the «Select most correlated genes for specified gene set» dialog (fig. 5.1).

File Ed	it View Select	Group	Analysis Graph Optic		i	
	1		Correlations	Select most correlated genes		
	cession Numb		Clustering 🕨 🕨	Get correlations between genes	Т	_35 Tu
1	D00003	Human	Principal component			6
2	D00003	Human	liver cytochrome P-4	Get correlations between fields		-3

5.2. Specify the sets of genes to calculate correlations between them by selecting the appropriate gene, which will be used as the base for correlation analysis (in our case, this is gene "X54489" – MGSA), from the "Gene list to select from" list (fig. 5.2). Once gene is selected, press the "Add" button, and it will be relocated into "Specified genes" list (fig. 5.3).

Previous query set	▼ Restore	Fields (0 of 40 selected)
Gene list to select from		Correlation type: Pearson r Threshold type and value Best N 10 Regime to treat multiple genes for query set: Max.correlation value to select Save Save Gave selected data Add specified genes File name
X54667 X54673 X54741 File load- Initial gene set		Current query set name:
View corr.matrix in separate window		

1. Gene selected for adding to the "Specified genes" list. **2.** Button for adding of a gene to the "Specified genes" list.

Previous query set	Restore	Fields (0 of 40 selected)
Gene list to select from X54162 X54163 X54163 X54232 X54380 X5457 X54667 X54667 X54673 X54673 X54667 X5467 X54667 X547 X547 X		Correlation type: Pearson r Threshold type and value Best N 10 Regime to treat multiple genes for query set Max.correlation value to select Save Save Save File name Browse.
Initial gene set		Current query set name:
Output setup I View corr.matrix in separate window	,	OK Cancel

1. Button for fields selection dialog.

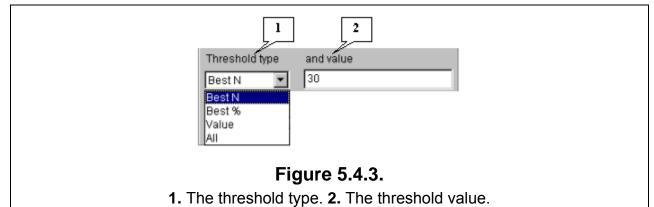
5.4. Specify the calculation parameters:

5.4.1. Specify fields that will be used for calculation by pressing the "Fields" button (fig. 5.3). The "Field selection" dialog (fig. 5.4.1.1) will appear.

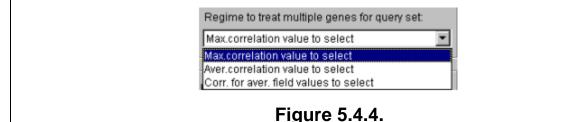
	eld Selection Field types filtering WORD WORD WORD WORD WORD Field groups filtering Field groups field groups filterin	
1. List of fields. 2.	Button for selecting all fields with data on experiments.	

In this example, calculation is based on expression measurements, i.e. all numeric fields, except "Sample" and "T-Test_tumor_vs._Normal", are used.

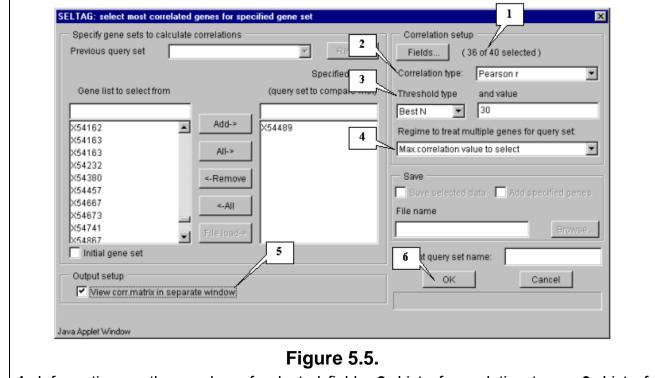
Press the "Select all experiments" button to select all fields, and then remove selection from the mentioned fields by clicking mouse on their names (fig. 5.4.1.2).


Press the "OK" button.

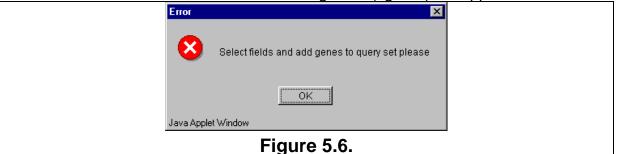
Field Selection Field types filtering WORD WALUE STRING FVALUE Field groups filtering Tumor Normal Select all Invert selection	Fields Normal_4 Normal_32 Normal_10 Normal_33 Normal_6 Normal_12 Normal_40 T-Test_tumor_vs_norm Invert selection Unselect all
Java Applet Window	
–	5.4.1.2.
 Selected fields with experime 	ents data. 2. Confirmation button.


5.4.2. Select the appropriate correlation type from the "Correlation type" list (fig. 5.4.2). In this example, the Pearson's correlation coefficient is used.

Correlation type:	Pearson r
	Pearson r Spearman r Kendall tau
Fi	gure 5.4.2.


5.4.3. Choose the correlation threshold type (fig. 5.4.3). If the "Best N", "Best %" or "Value" threshold types are selected, in the "and value" field specify the threshold value. In the current example, the "Best N" type with value 30 is used. It means that after calculations 30 genes with maximal absolute values of correlation coefficients with the target gene MGSA expression profile will be selected.

5.4.4. Choose the appropriate mode from the "Regime to treat multiple genes for query set" list (fig. 5.4.4). In this example, the "Max. correlation value to select" mode is used.


5.5. Specify the data output parameters. In this example, it is required to get a matrix with correlation coefficients in a separate window. To do this, check in the "View corr. matrix in separate window" checkbox (fig. 5.5).

1. Information on the number of selected fields. 2. List of correlation types. 3. List of correlation thresholds. 4. List of correlation regimes. 5. Checkbox for output of correlation matrix in a separate window. 6. Confirmation button.

Comment. The figure 5.5 represents the selected calculation parameters.

5.6. Press the "OK" button (fig. 5.5). If sets of genes are not formed or fields for calculations are not selected, the "Error" message box (fig. 5.6) will appear.

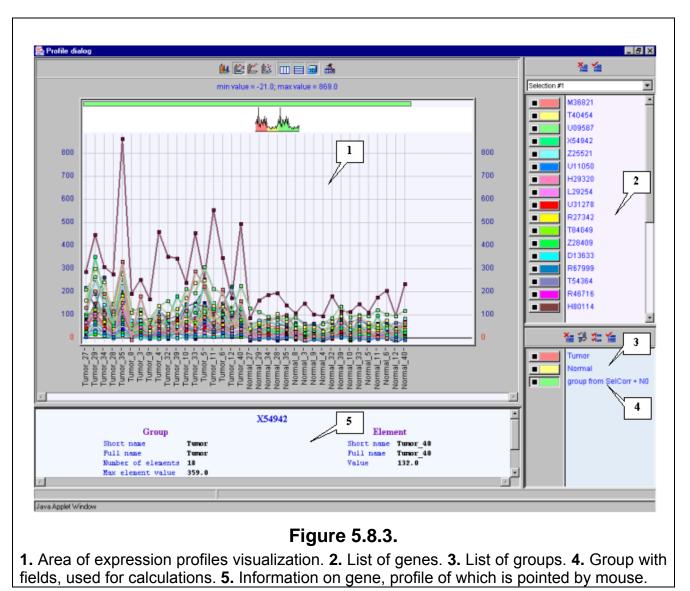
5.7. During the data processing the "Wait" message (fig. 5.7) appears, and once the process is over it disappears.

₩ait	×
Please wait while make correlation matrix command	ł executing
Java Applet Window	
Figure 5.7.	

5.8. Results of data processing:

5.8.1. In the main window the table with selected genes will be represented (fig. 5.8.1). Into the "Select" menu section the new "SelCorr + N0" item corresponding to current set of genes will be added.

	1 s	elect genes by query	4	5	6	7	8	9
	cession		nor_27	Tumor_29	Tumor_34	Tumor_28	Tumor_35	Tumor_8
1	M36821	itial data	137	206	196	119	337	
2	T40454	creat the	167	305	246	110	281	11
3	U0958;R	ernove all selections	215	271	184	151	331	12
4	X54942	H.sapiens cks	2 98	359	193	57	288	4
5	Z25521	H.sapiens int	96	261	149	73	245	8
6	U11050	Human NIMA	10	61	24	10	64	
7	H29320	ym60e02.s1 F	94	100	106	78	157	4
8	L29254	Human (clone	73	109	43	20	135	3
9	U31278	Human mitoti	47	116	56	22	123	1
10	R27342	yh53b11.s1 H	75	113	75	47	190	2
11	T84049	yd76f04.s1 H(104	128	112	35	126	6
12	Z28409	H.sapiens co	31	73	41	32	83	2
13	D13633	Human mRN/	10	32	14	5	17	
14	R67999	yi04c12.s1 Hc	91	97	80	39	103	2
15	T54364	ya91g04.s3 H	94	120	135	76	163	6
16	R46716	yg54f12.s1 Hc	28	119	52	23	100	1
17	H80114	yu09g04.s1 H	67	154	95	41	243	4
18	H87476	yw17g04.s1 ⊦	44	67	60	28	98	1
19	H81412	yu75g05.s1 H	13	19	16	12	29	
20	M61832	Human S-ade	224	198	89	154	258	1
21	U26312	Human hetero	223	138	268	65	204	4
22	H68165	yu55a12.s1 H	27	37	30	15	33	1
23	R75843	yi59f12.s1 Ho	291	454	313	282	869	19
24	T86749	yd77g12.s1 H	100	72	77	30	72	2
25	M77836	Human pyrrol	108	106	123	51	122	5
26	R87490	ym90f01.s1 H	55	99	81	36	134	2
27	H10798	ym04h12.s1 F	94	99	66	56	152	4
28	R56401	yg90b09.s1 H	76	77	78	28	95	2
29	R71505	yi52h02.s1 H(44	67	54	17	44	2
30	D14657	Human mRN/	44	110	98	54	142	


Figure 5.8.1.

1. The "Select" menu item corresponding to obtained set of genes. **2.** Table with obtained set of genes.

5.8.2. If to open the "View group data" dialog (using the "Group>View" command from the main menu - fig. 5.8.2.1), then one can see that in the list of experiments the new «group from SelCorr +N0» item with fields used for calculations (fig. 5.8.2.2) has appeared.

File	Edit	View	Select		Group 🖌	Anal	lysis	Graph	Opt	tions	Help
		1		ſ	View			3			4
		cession	Numb		Add	h		Sample		Tum	or_27
1		M36821		I	Edit	Ik	d				137
2		T40454		ì.	Load	Н	łc				167
3		U09587	r	t	Save	зy	d-				215
4		X54942		I	Delete	;k	(98
		200704					<u></u>				

SELTAG: view group data
Number of fields:401 OK
Group list Group Fields G1 Tumor Tumor_27 G2 Normal Tumor_29 G3 group from SelCorr + N0 Tumor_34 Tumor_35 Tumor_8 Tumor_3 Tumor_3 Tumor_3 Tumor_3
Group 3 name: group from SelCorr + N0 Number of group fields:36
Data type:1
Java Applet Window
Figure 5.8.2.2.
1. Information on the number of fields and groups in a project. 2. List of groups. 3. List of fields in the selected group. 4. Information on the selected group.

5.8.3. The «Profile dialog» window (fig. 5.8.3) with expression profiles for selected genes will appear.

5.8.4. Since the «View corr. matrix in separate window» checkbox in the «Select most correlated genes for specified gene set» dialog was checked in, the correlation matrix's window with correlation coefficients obtained in data processing (fig. 5.8.4) will appear.

The figure 5.8.4 shows that genes with GenBank accession numbers M36821, T40454, U09587, X54942 μ Z25521 have expression profiles, which correlate with that of target X54489 gene in larger degree than others.

File Ac	elation matrix tion	dialog	2	×
			2	
		ABS Max. corr	X54489/2	
0	M36821/1	0.8863	0.8863	
1	T40454/1	0.8844	0.8844	
2	U09587/1	0.8643	0.8643	
3	X54942/1	0.8594	0.8594	
4	Z25521/1	0.8554	0.8554	
5	U11050/1	0.8527	0.8527	
6	H29320/1	0.8404	0.8404	
7	L29254/1	0.8218	0.8218	
8	U31278/1	0.819	0.819	
9	R27342/1	0.8122	0.8122	
10	T84049/1	0.8086	0.8086	
11	Z28409/1	0.8061	0.8061	
12	D13633/1	0.8051	0.8051	
13	R67999/1	0.802	0.802	
14	T54364/1	0.7989	0.7989	
15	R46716/1	0.7986	0.7986	
16	H80114/1	0.7941	0.7941	
17	H87476/1	0.7877	0.7877	
18	H81412/1	0.784	0.784	
19	M61832/1	0.7801	0.7801	
20	U26312/1	0.7728	0.7728	
21	H69165/1	0.7637	0.7637	
22	R75843/1	0.763	0.763	
23	T86749/1	0.7605	0.7605	
24	M77836/1	0.758	0.758	
25	R87490/1	0.756	0.756	
26	H10798/1	0.7522	0.7522	
27	R56401/1	0.7485	0.7485	
28	R71505/1	0.7471	0.7471	
29	D14657/1	0.7451	0.7451	-
-	C I TOUTIT			التے ،
Lava day	olet Window			_

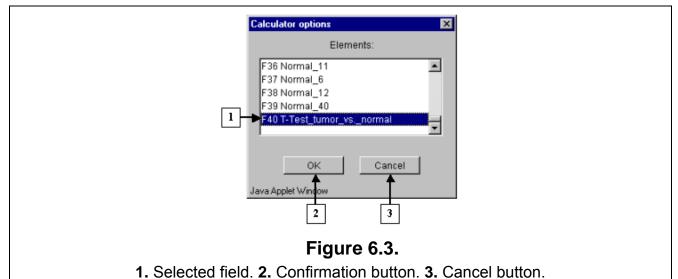
Figure 5.8.4.

1. Column with maximal coefficients of correlation. **2.** Column with obtained coefficients of correlation.

6. Clustering genes by their expression profiles.

In this chapter, the task of clustering genes by similarity of their expression profiles will be considered. For the first, genes with expression in tumorous tissues that significantly (by Student's criterion) differs from that in normal tissues (genes for which the value "T-Test_tumor_vs_normal" is lesser than 0.0001) should be selected.

To perform this task, the following steps are required:


6.1. Use the "Select>Select genes by query..." command from the main menu (fig. 6.1).

🌺 Selta	ig					. 🗆 🗙
File Edi	t View	Select Group Analysis Graph	Options Help			
	1	Select genes by query	3			<u> </u>
	cession	✓ Initial data	Sample	Tum	r_35	TL
1	D00003			i	6	
2	D00003	Remove all selections			-3	
		Fi	gure 6.1.			

6.2. The "Make selection" dialog (fig. 6.2) will appear. For the first, choose a field, which will be used for selection. In the "Field" section press the "Select" button (fig. 6.2).

1					Clear Expr.	Calculate scores for
\$F1: type=WORD.	2	OK	s	can	Cancel	last selection
F1 Accession Number	Select	AND	OR	NOT	()	
	Insert	==	>	<	=	
Text values for field		>=	<=	POW	SQRTO	
D00003	Select					
	Insert	7	8	9	+	
Group		4	5	6	-	Select cards with best scores
G1 Tumor	Belect	1	2	3	*	Type Not applied
Input condition level:	Insert	0		ABS0	I I	Value 1
Card No.						Value I.
Card index number designation	Insert					
ava Applet Window						

6.3. The "Calculator options" dialog with complete list of fields in the table (fig. 6.3) will appear. In the list select a field, which will be used for search. In our case it is the field: «F40 T-Test_tumor_vs._normal». Press the "OK" button.

6.4. In the "Make selection" dialog the following changes will occur (fig. 6.4):

- In the text area, the number and the name of selected field will appear: F40 T-Test_tumor_vs._normal
- In the status bar, the information on this field will be shown: \$F40: type=FVALUE.

6.5. Selected field ID should be inserted into expression line. To do this, press the "Insert" button. In the expression line the following will appear:

\$F40

- **6.6.** Using buttons of query entering specify the condition in the expression line (fig. 6.4): \$F40<0.0001
- **6.7.** To start the search process press the "Scan" button (fig. 6.4).

\$F40<0.0001				5	Clear Expr.	Calculate scores for
\$F40: type=FVALUE.	4	OK	s	tan	Cancel	last selection
F40 T-Test_tumor_vsnormal	Sel /ct	AND	OR	NOT	()	
	Insert	==	>	<	!=	
Text values for field		>=	<=	POW	SQRTO	
There are no text values for this field	Select					
	Insert	7	8	9	+	
Group		4	5	6		Select cards with best scores
G1 Tumor	Select	1	2	3	*	Type Not applied 💌
Input condition level:	Insert	0		ABS()	1	Value 1
Card No.						
Card index number designation	Insert		T	7		
			б			

Figure 6.4.

1. Expression line with selection criteria. **2.** Status bar with information on selected field. **3.** Number and ID of selected field. **4.** The "Insert" button for insertion of the field's number into expression line. **5.** Button for search start. **6.** Query entering buttons.

6.8. Once the selection is finished, information on the number of found genes will be represented in the status bar (fig. 6.5), and the "OK" button will become active.

Search expression:	1		2			Expr. score options
\$F40<0.0001	╶╷╧╌┍╴	/			Clear Expr.	Calculate scores for
240 cards selected. To exit hit < OK > I Field	outten.	OK	S	can	Cancel	last selection
F40 T-Test_tumor_vsnormal	Select	AND	OR	NOT	(L)	
, · · · · · · · · · · · · · · · · · · ·	Insert			·		
Text values for field		==	>	<	=	
There are no text values for this field	Select	>=	<=	POW	SQRT()	
	Insert	7	8	9	+	
Group		4	5	6	-	Select cards with best scores
G1 Tumor	Select	1	2	3	*	
Input condition level:	Insert	0		ABS0	1	Type Not applied Value 1
Card No.						Value
Card index number designation	Insert					
Java Applet Window						
Java Applet Window						

1. Information on the number of found genes. **2.** Button for accepting the search results.

6.9. Press the "OK" button.

6.10. In the application main window the table with selected genes (fig. 6.6) will be represented. In the «Select» section of the main window menu an additional item with the name corresponding to selected set of genes will appear. During the project run, the obtained sets of genes can be saved and remained available by simple switching between them. To remove the list of tables use the «Remove all selections» command.

ile Ec	it View Se	ect Group Analysis Graph	Options Help						
	1 9	Select genes by query	1 4	5	6	7	8	9	ŀ
	cession	nitial data	umor_27	Tumor_29	Tumor_34	Tumor_28	Tumor_35	Tumor_8	L
1	D00011	nitialData +\$F40<0.0001	26	13	13	9	2	10	Ц
2	D0013;	Remove all selections	18	13	11	28	6	63	l
3	D0076:	temove all selections	258	318	279	276	268	181	Ц
4	D12765	Human mRN/	84	53	49	173	149	16	Ц
5	D13641	Human mRN ₂	2 132	230	107	60	115	61	Ц
6	D14678	Human mRN ₂	11	12	18	27	9	3	Ц
7	D14812	Human mRN/	354	650	461	343	398	257	Ц
8	D15049	Human mRN/	16	43	59	28	42	22	Ц
9	D21262	Human mRN ₂	96	74	77	28	39	30	Ц
10	D25218	Human mRN ₂	35	15	20	13	11	4	Ц
11	D29808	Human mRN ₂	35	12	20	17	7	22	Ц
12	D31716	Human mRN/	69	62	36	28	23	20	
13	D31766	Human mRN/	34	33	39	22	45	7	Ц
14	D31885	Human mRN/	219	474	303	227	313	278	
15	D42047	Human mRN/	35	42	37	40	91	44	Ц
16	D63874	Human mRN/	425	441	505	401	342	460	
17	D78134	Human mRN/	196	121	138	160	81	117	Ц
18	H01420	yi99d09.s1 H(12	20	6	22	79	8	
19	H02613	yj41e03.s1 H(59	26	17	46	51	15	
20	H06524	yl78h01.s1 H(107	115	34	33	19	57	
21	H08393	yl92a10.s1 H(56	22	35	19	24	36	
22	H09351	yl95g07.s1 H(433	128	341	228	171	125	
23	H11084	ym09g08.s1 F	187	352	188	137	257	178	
24	H13133	yj06f10.s1 Ho	93	18	41	56	26	59	ſ

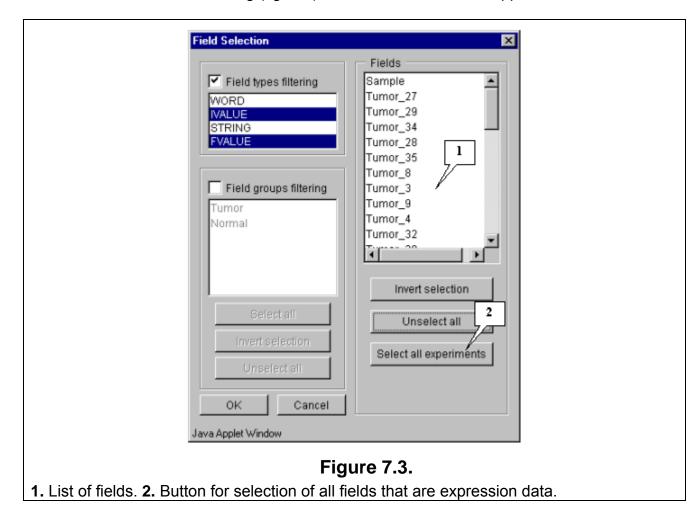
Figure 6.6.

1. Additional menu item that corresponds to obtained genes set. **2.** Table with selected genes.

As a result, the set of 240 genes with significant differences in expression between normal and tumorous tissues have been obtained. The further analysis will be performed for this set of genes.

7. Building the tree of genes.

One of the approaches for revealing the clusters of genes with similar expression profiles is the hierarchical clustering [2]. This approach is based on building a binary tree for genes using a specified metrics of distance between their expression profiles. Each tree node binds two descending nodes and branches lengths correspond to distances between expression profiles.


To perform this task, the following steps are required:

7.1. Use the "Analysis>Clustering>Build tree for genes" command from the main menu (fig. 7.1).

File Edi	t View Select	Group	Analysis Graph	Optic	ons Help			
	1	2	Correlations	►	4	5	. 6	9
	cession Numb	Descrip	Clustering	•	Build tree f	or genes	Tumo	imor_8
1	D00015	Human	Principal compone	nt	Find gene's	s clusters		10
2	D00137	Human c	lass	T				63
3	D00762	Human n	nRN/		Build tree f	or fields		181
4	D12765	Human n	nRN/		Load tree			16
5	D13641	Human n	nRN/			-		61

7.2. The "Tree calculation setup" dialog (fig. 7.2) will appear. For the first, choose the fields that will be used for calculations by pressing the "Fields" button.

SELTAG: tree calculation setup Correlation setup Fields (0 of 40 selected) Correlation type: Pearson r Output options Create expr.image Make tree for fields Save tree File name: Prowse	Tree options Distance type: 1 -Rij Amalgamation rule: UPGMA Data subset All genes OK Cancel
Java Applet Window	
Figure 1. The "Fields"	

7.3. The "Field selection" dialog (fig. 7.3) with the list of fields will appear.

7.4. In this example, all fields, except the "Sample" and "T-Test_tumor_vs_Normal" ones, are used for calculations. Press the "Select all experiments" button (fig. 7.3) to select all fields and then remove selection from the appropriate ones ("Sample" and "T-Test_tumor_vs_Normal") (fig. 7.4).

Field Selection	Fields Normal_4 Normal_32 Normal_39 Normal_10 Normal_33 Normal_6 Normal_11 Normal_6 Normal_12 Normal_40 T-Test_tumor_vsnorm Invert selection Unselect all Select all experiments	
2 ect all	Select all experiments	
Java Applet Window		

7.5. Press the "OK" button. In the "Tree calculation setup" dialog, in the area near the "Fields" button, the information on the number of selected fields will be represented (fig. 7.5). After this, do the following:

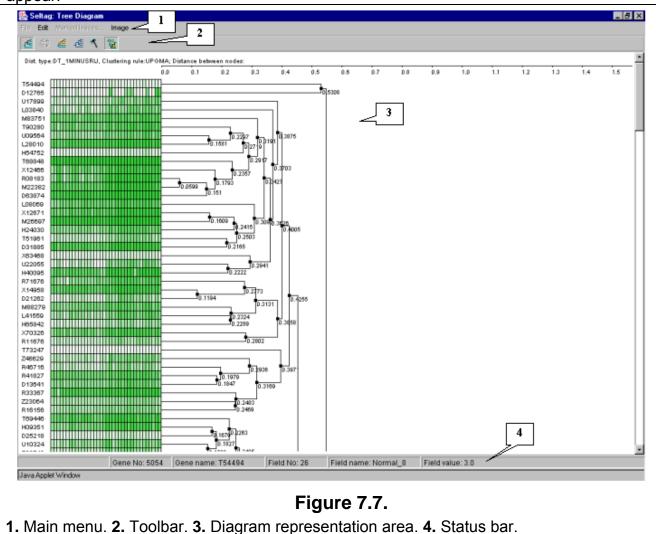
- Choose the type of correlation from the "Correlation type" list. In this example, the Pearson's correlation coefficient is used.
- Choose the type of distances that are calculated on the base of Rij correlation coefficients from the «Distance type» list. In this example, the "1-Rij" distance is used. It means that the coefficient of correlation between pair of genes *i* and *j* is higher the distance is smaller.
- Choose the type of nodes amalgamation from the «Amalgamation rule» list. In this example, the "UPGMA" type is used.
- Choose the subset of genes for building a tree from the «Data subset» list. In this example, the "all genes" subset (all genes from the current table) is used.
- Specify the parameters for data output.

- Check in the «Create expr. image» checkbox to obtain the diagram of expression matrix after calculation.
- Check in the «Make tree for fields» checkbox. In this case, the tree of similarity between experiments values in expression matrix is calculated, and visualization of the expression diagram is occurred in accordance to tree of fields.

The described settings are shown in the figure 7.5.

Г

SELTAG: tree calculation setup Correlation setup 1 Fields (36 of 40 selected) 2 Correlation type: Pearson r Output options Create expr.image 6 Make tree for fields 7	Tree options Distance type: 1 -Rij Amalgamation rule: UPGMA Data subset:
Save tree File name: Browse Java Applet Window	All genes 5 OK Capcel 8 9


Figure 7.5.

1. Information on the number of selected fields. 2. List of correlation coefficients. 3. List of distance types. 4. List of nodes amalgamation types. 5. List of genes subsets for building a tree. 6. Checkbox for diagram of expression matrix output. 7. Checkbox that regulates the order of experiments in accordance to tree of fields. 8. Confirmation button. 9. Cancel button.

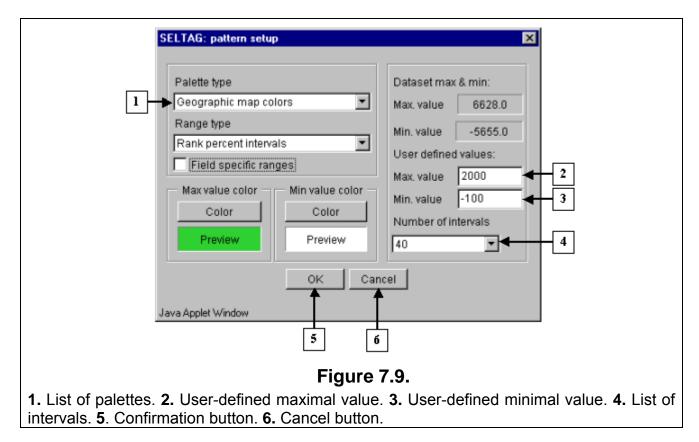
7.6. Press the "OK" button. The "Wait" message box (fig. 7.6.) will appear for the duration of calculation process.

Wait 🗙	
Please wait while make gene tree command executing	
Java Applet Window	
Figure 7.6.	

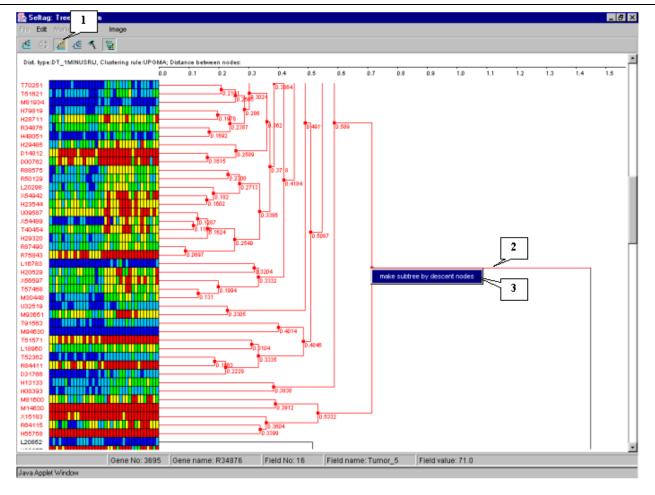
7.7. The "Tree Diagram" window with the tree of genes and expression matrix (fig. 7.7) will appear.

7.8. For more illustrative representation of the expression matrix, change the appropriate parameters. Use the "Image>Image setup" command from the main menu (fig. 7.8).

🌺 Seltag:	Tree Diagram						_ 8	X
File Edit	Marked leaves	Image						
🖆 🗇	🙋 🗄 🔨	✓ View expr.image						
	DT_1MINUSRIJ, C	Image setup	ince betweer	. node				
Dist. type.i	DI_ININOSKIS, C	Column data subset 🕨	,		1.3	1.4	1.5	-
		Figur	e 7.8.					


7.9. The "Pattern setup" dialog (fig. 7.9) will appear. In this window, the following settings should be changed:

- In the "Palette type" list choose the "Geographic map colors" palette type.
- In the "User defined values:" field set the value «2000» for maximum and «–100» for minimum.


• In the "Number of intervals" list select the value «40».

The described settings are shown in the figure 7.9.

Press the "OK" button. The matrix palette will change in accordance with selected settings.

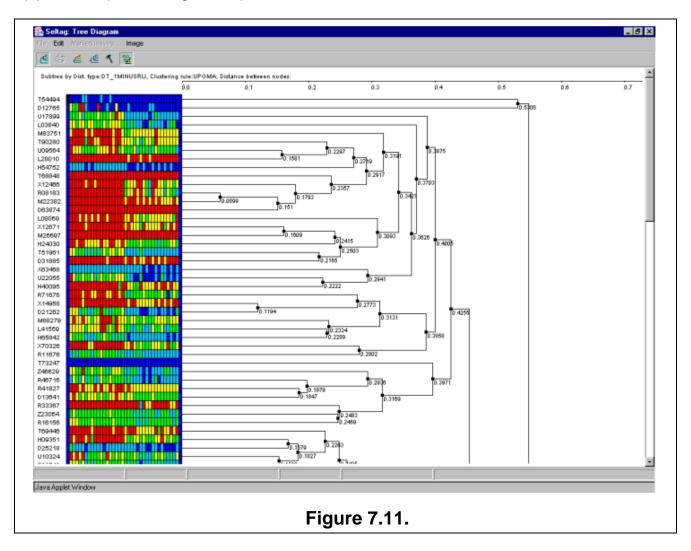
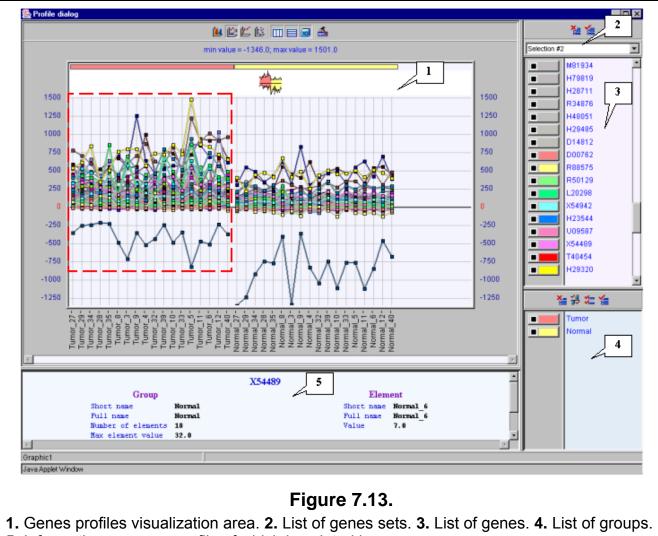

7.10. It is illustrative on the tree diagram, that genes are divided into two large clusters. To continue analysis for the one of them only, press the function to turn on the mode for selection of descending nodes by mouse clicking, and click on the root node of the cluster. All nodes and branches of the selected cluster (cluster 1 for the further) will be highlighted by red (fig. 7.10). Click on the selected cluster by the right mouse button and choose the appeared "Make subtree by descent nodes" command (fig. 7.10).

Figure 7.10.

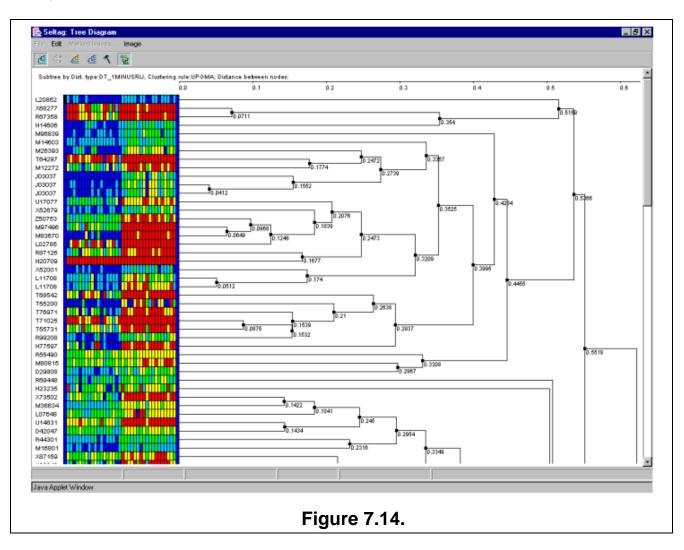
1. Button for descent nodes selection mode. **2.** Selected node. **3.** Command for building the tree of selected cluster.

7.11. The window with tree and expression matrix for cluster 1 will appear (fig. 7.11). It is notable that color expression diagram is characterized by division of experiments (all columns except the first and the last ones) into two groups. The left part of diagram for the cluster of genes, shown on figure 7.11, has the higher expression level than the right one. In this case, the left part represents the expression values for the tumorous tissues. Such a division is a result of additional clustering of tissues simultaneously with that of genes (option 7 of panel on figure 7.5)


7.12. The table with genes from the cluster 1 (fig. 7.12) will be represented in the main window. It is illustrative that genes X54489 and X54942 with high expression in tumorous tissues have been included in this table.

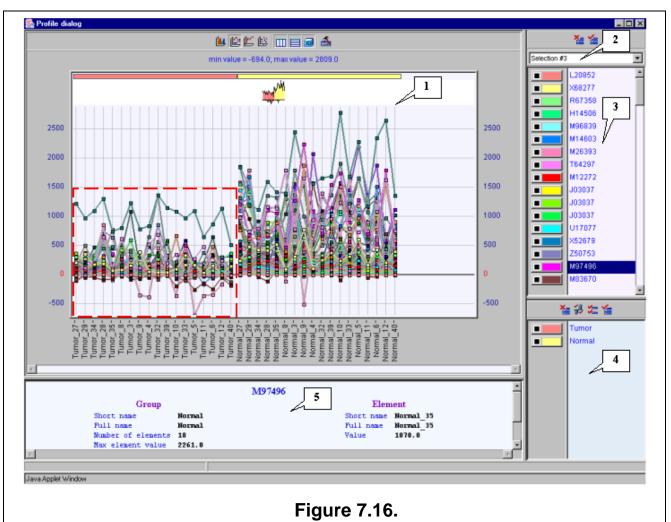
		ect Group Analysis Graph electigenes by query				7	8	9	П
	cession	eners Ternes of deer 1					Tumor 35	Tumor_8	ťĨ
74		itial data					33	-16	П
75	H79815	itialData +\$F40≪0.0001				59	55	17	Π
76	H2871	ubtree by Dist. type:DT_1MINUSR	IJ, Clustering rule: UPGM	A; Distance betw	veen nodes: 🏒	179	172	94	H
77		emove all selections				103	104	62	1
78	H48051	yp79g11.s1 H	41	51	28	71	57	0	Ħ
79	H29485	ym32h11.s1 F	99	151	140	118	137	69	1
80	D14812	Human mRN/	354	650	461	343	398	257	1
81	D00762	Human mRN/	258	318	279	276	268	181	Π
82	R88575	ym95f04.s1 H	102	111	93	2	116	81	1
83	R50129	yj54h10.s1 H(78	48	127	للثرر	86	41	Π
84	L20298	Homo sapien	66	127	130	103	116	48	
85	X54942	H.saniens.cks	160	388	258	177	250	125	Π
86	H23544	ymp 3 1 F	181	211	238	143	194	94	
87	U09587	uman glycyl-	215	271	184	151	331	125	
88	X54489	Human gene	123	271	127	59	265	3	
89	T40454	ya01f03.s2 H(167	305	246	110	281	115	
90	H29320	ym60e02.s1 F	94	100	106	78	157	43	
91	R87490	ym90f01.s1 H	55	99	81	36	134	23	
92	R75843	yi59f12.s1 Ho	291	454	313	282	869	198	
93	L16783	Human putati	10	19	6	18	8	13	ŀ
94	H20529	ym47b06.s1 F	178	69	75	161	124	99	
95	X56597	Human humF	235	172	112	180	78	108	
96	T57468	yb56b11.s1 H	192	184	97	136	101	86	
97	M30448	Human casei	119	92	52	112	50	37	Π

Figure 7.12.


1. Additional menu item corresponding to obtained set of genes. **2.** Table with selected genes. **3.** Selected gene.

7.13. In the main window choose the "Graph>Specified with current selection" command of the main menu. The "Profile Dialog" window with expression profiles of genes from the cluster 1 (fig. 7.13) will appear. It is illustrative that, for this cluster, the expression values in tumorous tissues (profiles inside the red rectangle) are higher than in normal ones (profiles outside the red rectangle).

5. Information on gene, profile of which is pointed by mouse.


7.14. Perform the steps described in 7.10-7.13 for the second cluster. The obtained tree, table of genes and profiles of genes for the cluster 2 are shown in the figures 7.14-7.16. It is illustrative that, for this cluster, the expression values in tumorous tissues (profiles inside the red rectangle) are lower than in normal ones (profiles outside the red rectangle) (fig. 7.16).

	it View	Select Group Analysis Graph Select genes by query				7	8	9	П
	cession	Select genes by query				or_28	Tumor_35	Tumor_8	r1
1	L20852	Initial data				101_20	7	-3	Н
2	X68277	initialData +\$F40<0.0001				1	94	101	
3	R67351	Subtree by Dist. type:DT_1MINUSR	IJ, Clustering rule:UPGM	A; Distance betv	veen nodes:	/154	71	105	
4		Subtree by Dist. type:DT_1MINUSR	IJ, Clustering rule:UPGM	A; Distance betv	veen nodes:	4	-1	5	1
5	M96835	Remove all selections				-22	0	-16	1
6	M14603	Human myog	13	24	21	7	20	24	t
7	M26393	Human short	-11	-2	27	9	61	23	1
8	T64297	yc48a10.s1 H	249	131	228	661	125	628	t
9	M12272	Homo sapien	97	19	62	67	14	1	Π
10	J03037	Human carbo	2	7	7		3	4	1
11	J03037	Human carbo	4	13	19	2	0	7	1
12	J03037	Human carbo	-3	5	17	2	3	7	1
13	U17077	Hymen PENE	16	40	35	29	47	49	Π
14	X52679	Hu 3 SM-:	15	-12	12	-3	10	6	Π
15	Z50753	H saplens mF	35	26	25	41	29	44	
16	M97496	Homo sapien	10	60	48	78	19	11	
17	M83670	Human carbo	-81	-30	-1	4	-34	-13	
18	L02785	Homo sapien	3	101	198	323	70	36	
19	R87126	yq31b10.s1 H	26	16	37	32	6	125	
20	H20709	yn63h10.s1 H	1238	989	1118	1322	760	822	
21	X52001	H.sapiens en	4	3	-5	8	1	10	
22	L11708	Human 17 be	14	15	17	11	36	17	
23	L11708	Human 17 be	12	-43	11	22	50	16	
.24	T68542	yc43a03.s1 H	118	88	49	125	-1	279	Į,

Figure 7.15.

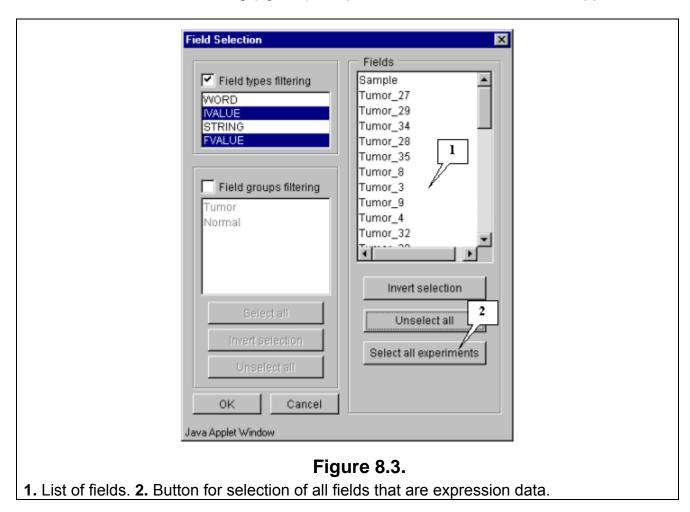
1. Additional menu item corresponding to obtained set of genes. **2.** Table with selected genes. **3.** Selected gene.

Genes profiles visualization area. 2. List of genes sets. 3. List of genes. 4. List of groups.
 Information on gene, profile of which is pointed by mouse.


Thus, the hierarchical clustering analysis has allowed to select two clusters of genes that differ in their relative expression values in tumorous and normal tissues.

8. Principal components analysis.

In the current chapter, the usage of principal components [3] in analysis of 240 selected genes expression is described. During the analysis, the expression table is being represented as a cloud of dots in multidimensional space. Each coordinate of this space represents the expression in appropriate tissue (experiment), and genes are represented as dots, location of which is defined by the expression values in experiments set. In this space, the set of axes, number of which is equal to that of experiments, and which are mutually orthogonal, is being calculated. Moreover, dispersion of dots along the first axis should be absolutely maximal, the similar dispersion along the second axis should be maximal among the remaining values, etc. These axes are referred to as components. The values of dots dispersion along these axes are characterized by sets of eigenvalues for components. Directions of these axes in the space of experiments are referred to as loadings. The first k of components that have the maximal dots dispersion are referred to as k principal components. To visualize data, most commonly use k=2, and consider the plot of dots' projection onto plane of the first two components. Such a plot allows to illustrate the location of dots in multidimensional space as well as to reveal existing clusters of aenes.


To perform this task, the following steps are required:

8.1. Use the "Analysis>Principal component" command from the main menu (fig. 8.1).

8.2. The "Setup for principal component analysis" dialog (fig. 8.2) will appear. Press the "Fields" button (fig. 8.2).

SELTAG: setup for principal component	analysis
Field set 1 Fields (0 of 40 selected) Matrix type COVARIATION 💌	Component plots
	Variance
	Variance (%total):
	Eigenvalue plot Loadings plot Save results
OKENIT Calculate Cancel	2d projection plot for genes
OK,Exit Calculate Cancel	Draw
	Component X Component Y
Java Applet Window	
	Figure 8.2.
1. Button for call the "Field selection" dia	alog.

8.3. The "Field selection" dialog (fig. 8.3) that provides the choice of fields will appear.

8.4. In this example, all fields, except the "Sample" and "T-Test_tumor_vs_Normal" ones, are used for calculations. Press the "Select all experiments" button (fig. 8.3) to select all fields and then remove selection from the appropriate ones ("Sample" and "T-Test_tumor_vs_Normal") (fig. 8.4).

Field Selection Field types filtering WORD VALUE STRING FVALUE Field groups filtering Tumor Normal Select all Invert selection 2 ect all	Fields Normal_4 Normal_32 Normal_39 Normal_10 Normal_33 Normal_5 Normal_12 Normal_40 T-Test_tumor_vsnorm Invert selection Unselect all Select all experiments
Invert selection	Unselect all
Java Applet Window	
	re 8.4.

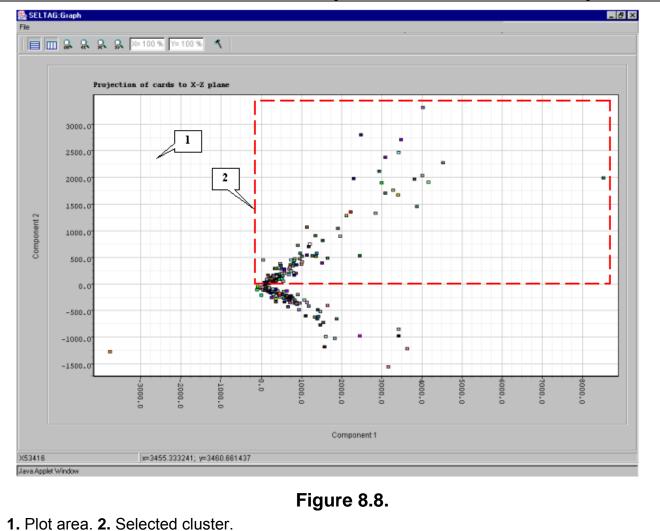
8.5. Press the "OK" button. In the "Setup for principal component analysis" dialog, in the area near the "Fields" button, the information on the number of selected fields will be represented (fig. 8.5.1). After this, do the following:

- Choose the type of matrix from the "Matrix type" list. In this example, the correlation matrix is used.
- Press the "Calculate" button.

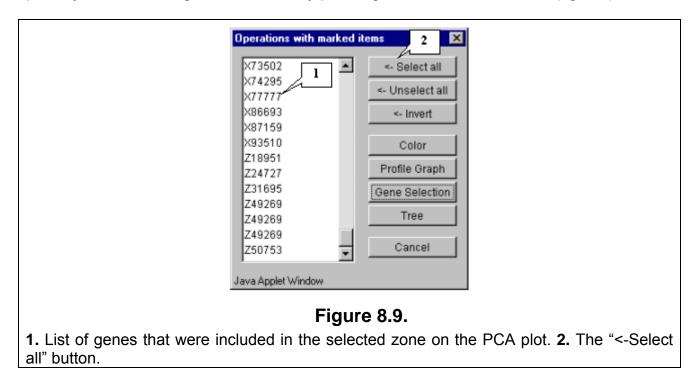
The "Wait" message box (fig. 8.5.2) will appear for the duration of calculation process.

Field set 1	Component plots
Fields (36 of 40 selected) 2	Mark all->
Matrix type COVARIATION	The state st
COVARIATION	
CORRELATION	
	Variance
	Variance (%total):
	Eigenvalue plot Loadings plot Save results
3	
OK,Exit Calculate Cancel	2d projection plot for genes
	Draw
	Component X Component Y
ava Applet Window	·
	Figure 8.5.1.

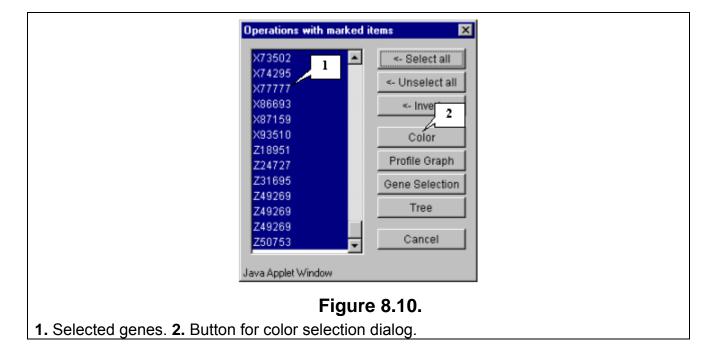
Wait 🔀	Wait
Please wait while make pca command executing	Please wait while
Java Applet Window	Java Applet Window
Figure 8.5.2.	


г

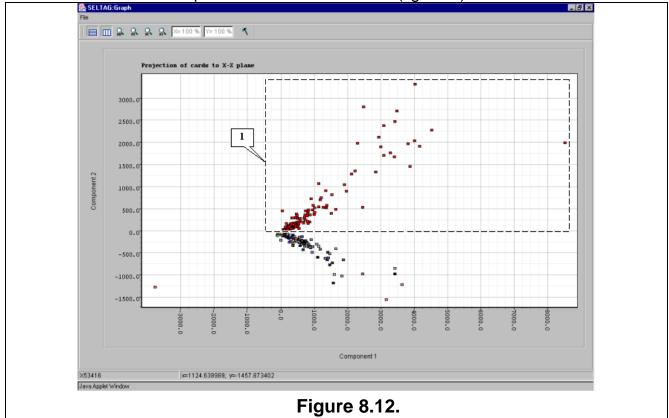
8.6. In the "Setup for principal component analysis" window, in the «Component plots» list, components (eigenvectors), numbered in descending eigenvalues order, will appear (fig. 8.6).

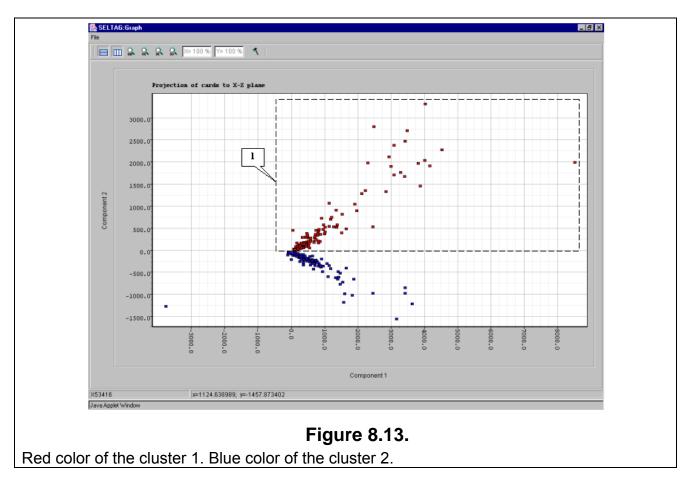

Field set	Component plots
Fields (36 of 40 selected) Matrix type CORRELATION	Mark all-> Component 1 Component 2 Component 3 Component 4 Component 5
	Variance: 29.9055 Variance (% total): 83.07060258165951
4 OK,Exit Calculate Cancel	Eigenvalue plot Loadings plot Sa Jults
Java Applet Window	Component 1 Component 2 Draw Component X Component Y
Java Applet window	Figure 8.6.

8.7. Choose the first and second components in the "2d projection plot for genes" section and press the "Draw" button (fig. 8.6).

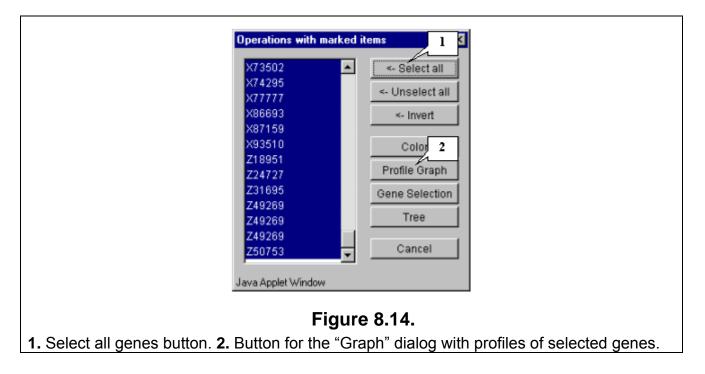

8.8. The "Graph" dialog with plot of genes distribution in the space of 2 principal components (fig. 8.8) will appear. On the plot, the two clusters along the ordinate axis can be selected. To select one of them, click the right mouse button as shown in the figure 8.8.

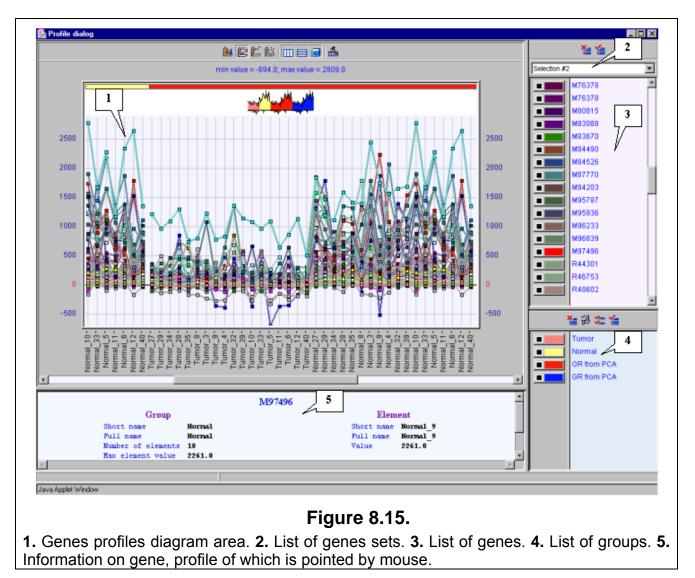
8.9. The "Operations with marked items" dialog that allows to operate the selected objects will appear. The list contains the genes of selected cluster. In order to change the color of plot objects, select all genes in the list by pressing the "<-Select all" button (fig. 8.9).


8.10. All genes in the list will become selected (fig. 8.10). Press the "Color" button.


8.11. The "Color chooser dialog" window (fig. 8.11) that provides an object color selection will appear. Once selection is done, press the "OK" button.

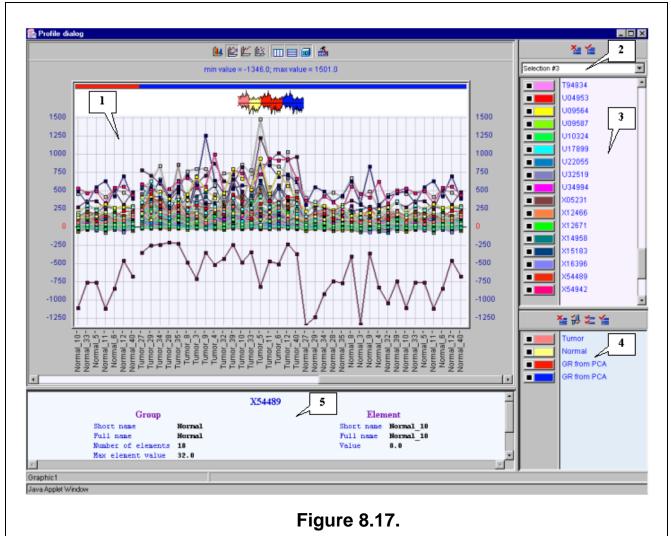
	нзв Фн О
	C s 99
	С в 97 RGB
Custom colors	C R 248
	C G 2
	4 Св 2
	Set custom color OK Cancel Apply color


1. Color selector. 2. Color line. 3. New color preview area. 4. Confirmation and exit button.


8.13. To change the color of second cluster, repeat actions 8.8-8.11. The result is shown in fig. 8.13: the red cluster will reffered to as cluster 1, and the blue one - cluster 2.

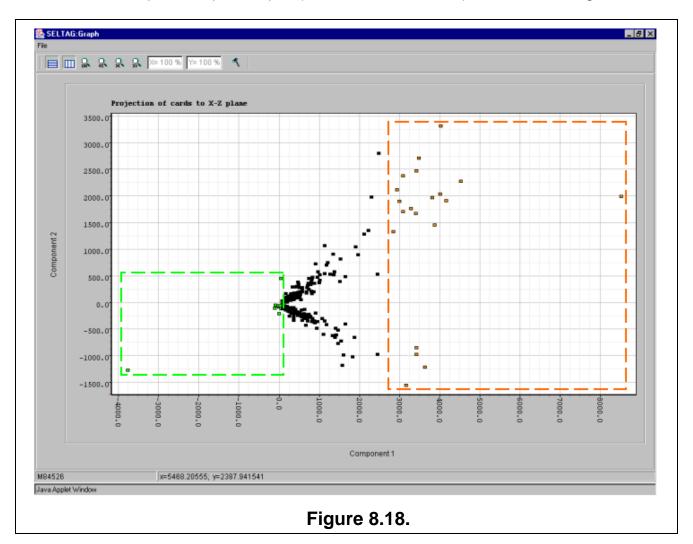
8.14. To get the diagram of cluster 1 genes' profiles, select the cluster by drawing a rectangle at hold mouse right button as shown in figure 8.13. The "Operations with marked items" dialog will appear. Select all genes by pressing the "<-Select all" button and then press the "Profile Graph" button (fig. 8.14).

8.15. The dialog with profiles of genes in cluster 1 (fig. 8.15) will appear. It is illustrative, that genes in cluster 1 have the lower expression level in tumorous tissues than in normal ones.

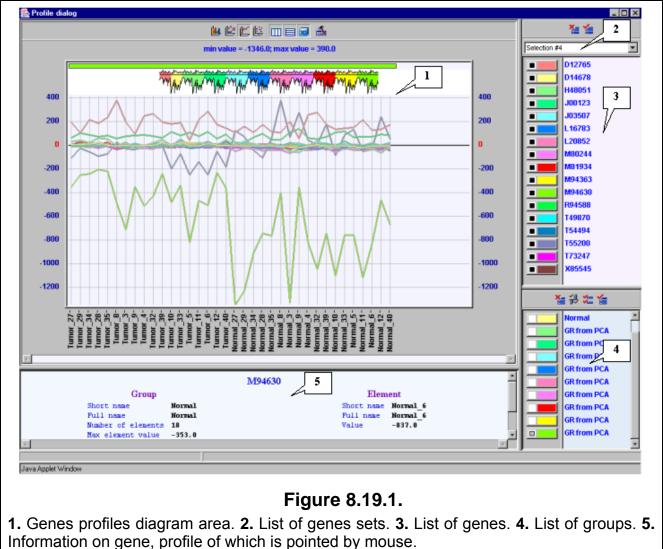

e Ed	R View S	Had Group Analysis Graph Option	s Help								
	1	Select genes by query		5	6	7	8	9	10	11	12
	cession	Initial data		Tumor_29	Turnor_34	Tumor_28	Tumor_35	Tumor_8	Tumor_3	Tumor_9	Turnor_4
36	L20852	nitialData +\$F40<0.0001		1 6	20	15	7	-3	11	-3	-2
37	M12271	Gene's selection was generated by PCA r	nodule	9	62	67	14	1	51	31	91
38	M1460.	Remove all selections		24	21	7	20	24	19	12	25
39	M1474:			7	11	8	9	8	6	9	3
40	M16801	Human miner	11	17	6	8	14	4	2	11	2
41	M22995	Human ras-re	24	18	33	9	23	21	11	4	10
42	M26393	Human short	-11	-2	27	9	61	23	-1	-5	51
43	M28882	Human MUC1	-3	0	-2	6	0	5	10	-5	-11
44	M36634	Human vasos	18	18	29	26	17	49	24	16	12
45	M63391	Human desm	205	2 4	108	197	76	177	291	100	116
46	M63603	Human phos	23	6	16	28	5	45	33	16	19
47	M69054	Human insuli	53	16	10	29	21	72	22	32	44
48	M69135	Human mono	3	0	0	7	-8	6	13	0	59
49	M76378	Human cystei	13	38	39	44	22	182	211	74	99
50	M76378	Human cystei	13	38	39	44	22	182	211	74	99
51	M80815	H.sapiens a-L	54	32	79	52	66	66	82	45	70
52	M83088	Human phose	46	11	29	45	32	43	20	27	21
53	M83670	Human carbo	-81	-30	-1	4	-34	-13	118	-35	31
54	M84490	Human extrac	29	46	66	77	50	58	28	67	40
55	M84526	Human adips	122	54	66	28	28	210	32	257	51
56	M87770	Human fibrob	1	5	10	8	3	5	2	-7	-1
57	M94203	Homo sapien	40	53	58	56	64	37	69	34	11
58	M95787	Human 22kD	235	102	98	280	14	268	250	84	173
59	M95936	Human protei	54	-17	-8	49	4	48	-74	-73	10
60	M96233	H 3 Itat	102	56	119	121	109	106	98	96	84
61	M96839	btei	3	3	12	-22	0	-16	24	19	6
62	M97496	Homo sapien	10	60	48	78	19	11	175	42	105
63	R44301	yg34e10.s1 H	8	26	21	11	19	20	19	12	15
64	R46753	yj54a03.s1 H(152	186	156	144	149	100	125	121	73
65	R48602	yj65f01.s1 Ho	36	8	27	65	27	4	54	14	-4
66	R54846	yj74c05.s1 Hc	13	11	7	3	14	22	21	14	-6
67	R55490	yj75e09.s1 H(36	51	44	52	47	58	96	123	93
6.9	R59199	vn97d07 s1 H	. 18	37	27	38	81	78	26	4.6	5

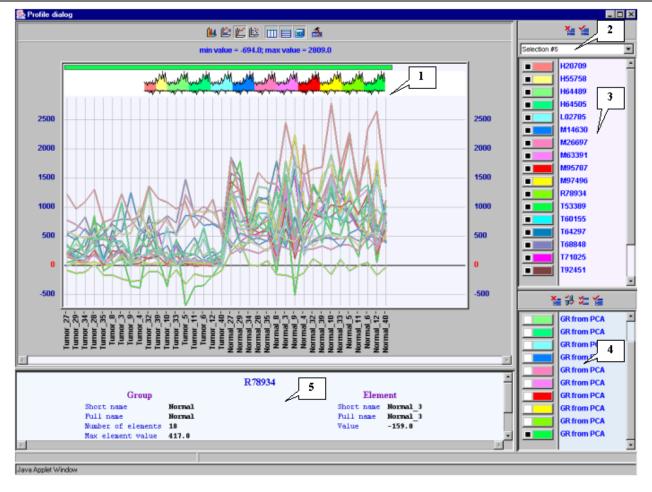
8.16. In the main window, the table with genes from cluster 1 (fig. 8.16) will be represented.

Figure 8.16.


1. Additional menu item corresponding to obtained set of genes. **2.** Table with selected genes. **3.** Selected gene.

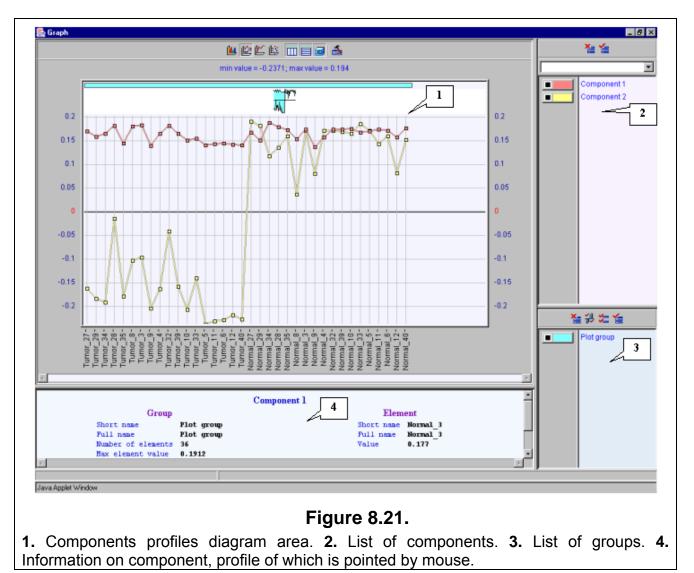
8.17. On building the expression profiles for cluster 2 (blue cluster on fig. 8.13), it is illustrative that genes of this cluster are overexpressed in tumorous tissues if compared with normal ones (fig. 8.17). Thus, the second component represents the relative expression of genes in tumorous/normal tissues. If the projection is positive, it means the gene is expressed presumably in normal tissues, if negative - in tumorous ones.




1. Genes profiles diagram area. **2.** List of genes sets. **3.** List of genes. **4.** List of groups. **5.** Information on gene, profile of which is pointed by mouse.

8.18. To analyse the genes distribution along the abscissa axis, i.e the first component, select the genes with minimal and maximal values of the component as shown in figure 8.18. Build the expression profiles plot (described in 8.14-8.15) for the selected genes.

8.19. Expression profiles plot for genes marked with green in figure 8.18 is shown on fig. 8.19.1. That for genes marked with orange in figure 8.18 is shown on fig. 8.19.2. When compared, it is illustrative, that genes of green cluster have the total expression level lower than that of orange one.


Figure 8.19.2.

1. Genes profiles diagram area. **2.** List of genes sets. **3.** List of genes. **4.** List of groups. **5.** Information on gene, profile of which is pointed by mouse.

8.20. To analyze the plots for the first two components, select these components in the "Component plots" list in the "Setup for principal component analysis" dialog as shown on figure 8.20 and press the "Loadings plot" button.

Field set Fields (36 of 40 selected)	Component plots Mark all-> Component 1				
Matrix type CORRELATION 💌	Component 2 Component 3 Component 4 Component 5				
	Variance: 29.9055				
	Variance (% total): 83.070602581659 2				
	Eigenvalue plot Loadings plot Save results				
OK,Exit Calculate Cancel	2d projection plot for genes				
Carculate	Component 1 Component 2 Draw				
	Component X Component Y				
Java Applet Window					
	Figure 8.20.				

8.21. The «Graph» dialog with group values for each component (fig. 8.21) will appear. It is illustrative on the plot, that all coefficients for the first component are positive and approximately equal, thus it is reasonable, that the first component is responsible for total expression level. The plot for the second component shows that for tumorous tissues all coefficients are negative, and for normal one - positive.

It is reasonable, that the first component represents total expression level in all tissues. Genes with higher projection value for this component are overexpressed, genes with projection value close to 0 are downexpressed. The second component is supposed to be responsible for expression diversities in tumors and normal tissues.

Thus, the analysis of the first two components for the set of 240 genes has allowed revealing two clusters of genes with different relative expression levels in tumors and normal tissues. At he same time, this analysis have showed that projection of expression value on the first component reflects the total gene expression level, while that on the second component characterizes relative gene expression in normal and tumorous tissues.

9. Resume.

Represented analysis of data from the notterman2001_set1.txt file implementing several methods has allowed to select sets of genes, which are expressed differentially in normal and tumorous tissues.

10. References.

- 1. Notterman DA, Alon U, Sierk AJ, and Levine AJ (2001) Transcriptional Gene Expression Profiles of Colorectal Adenoma, Adenocarcinoma, and Normal Tissue Examined by Oligonucleotide Arrays, *Cancer Res.* **61**, 3124–3130.
- 2. Sneath P.H.A., Sokal R.R. (1973) Numerical Taxonomy. The principles and practice of numerical classification. San Francisco: W.H. Freeman and Co.
- 3. Everitt BS and Dunn G. Applied Multivariate Data Analysis. 1992 Oxford University Press, New York, NY.